3
66
A. Gazsi et al. / Applied Catalysis A: General 391 (2011) 360–366
when the rupture of C–C bond is probably the slowest step in the
(iv) The high activity is attributed to the easy formation of methanol
from DME on alumina and to the high reactivity of Au–CeO2
interface in the decomposition of methanol.
decomposition of DME Au/CeO : the conversion of DME remained
2
relatively at low level, around 20% even at 773 K (Fig. 3A). Never-
theless, concerning the production of hydrogen, Au/CeO exhibited
(v) Adding potassium to this catalyst promoted the production of
hydrogen.
2
the highest activity among the Au samples studied. In contrast,
on Au/Al O , which catalyzed effectively the conversion of DME
2
3
(
Fig. 3B), the main reaction pathway was basically different. The pri-
Acknowledgements
mary product was methanol, which suggests the occurrence of the
hydrolysis of DME with the participation of OH groups of alumina
This work was supported by OTKA under contract number NI
6
9327 and K 81517.
CH –O–CH
+ OH(a) = 2CH OH
(3)
3
3(g)
3
(g)
The use of CeO + Al O mixed oxide as a support for Au, how-
References
2
2
3
ever, resulted in the highest rate for the formation of hydrogen in
both the decomposition and the reforming of DME (Figs. 4 and 5).
This high activity can be attributed (i) to the hydration property of
alumina, (ii) to the formation of methanol (Eq. (3)) and (iii) to the
high reactivity of Au–CeO2 interface in the activation and decom-
position of methanol [27]
[
[
1] G. Sandstede, T.N. Veziroglu, C. Derive, J. Pottier (Eds.), Proceedings of the Ninth
World Hydrogen Energy Conference, Paris, France, 1972, pp. 1745–1752.
2] A. Haryanto, S. Fernando, N. Murali, S. Adhikari, Energy Fuels 19 (2005)
2098–2106.
[
[
[
[
3] A.M. Rouhi, Chem. Eng. News 73 (1995) 37–39.
4] J.-L. Li, X.-G. Zhang, T. Inui, Appl. Catal. A: Gen. 147 (1996) 23–33.
5] T. Fleish, Stud. Surf. Sci. Catal. 107 (1997) 117–125.
6] G.A. Olah, Á. Molnár, Hydrocarbon Chemistry, Wiley, New York, 2003, and
references therein.
7] A. Kecskeméti, R. Barthos, F. Solymosi, J. Catal. 258 (2008) 111;
A. Széchenyi, F. Solymosi, Catal. Lett. 127 (2009) 13–19.
CH OH = CO + 2H
(4)
3
2
[
In the explanation of high activity of Au/CeO2 in the decom-
position of methanol it was proposed that Au/CeO2 contains a
very reactive site [27]. This could be the interface between Au
and partially reduced CeOx, where an electronic interaction occurs
between Au and the n-type CeO2 semiconductor, similar to that
discovered first between Ni and n-type TiO2 [41]. Considering the
rapid conversion of DME into methanol on the composite cata-
lyst and the easy formation of methoxy species from methanol on
solids studied, we assume that the slowest step in the generation of
hydrogen from DME over Au/CeO + Al O catalyst is the cleavage
[8] V.V. Galvita, G.L. Semin, V.D. Belyaev, T.M. Yurieva, V.A. Sobyanin, Appl. Catal.
A: Gen. 216 (2001) 85–90.
[
10] T. Nishiguchi, K. Oka, T. Matsumoto, H. Kanai, K. Utani, S. Imamura, Appl. Catal.
A: Gen. 301 (2004) 66–74.
[11] K. Faungnawakij, Y. Tanaka, N. Shimoda, T. Fukunaga, S. Kawashima, R. Kikuchi,
K. Eguchi, Appl. Catal. A: Gen. 304 (2006) 40–48.
12] T. Kawabata, H. Matsuoka, T. Shishido, D. Li, Y. Tian, T. Sano, K. Takehira, Appl.
Catal. A: Gen. 308 (2006) 82–90.
[13] T.A. Semelsberger, K.C. Ott, R.L. Borup, H.L. Greene, Appl. Catal. B: Environ. 61
2005) 281–287;
T.A. Semelsberger, K.C. Ott, R.L. Borup, H.L. Greene, Appl. Catal. B: Environ. 65
2005) 291–300.
9] K. Takeishi, H. Suzuki, Appl. Catal. A: Gen. 260 (2004) 111–117.
[
[
(
2
2
3
of one of the C–H bonds in the methoxy species
(
[
14] N. Laosiripojana, S. Assabumrungrat, Appl. Catal. A: Gen. 320 (2007) 105–
CH O = CH O + H(a)
(5)
3
(a)
2
(a)
113.
[
15] T. Fukunaga, N. Ryomon, S. Shimazo, Appl. Catal. A: Gen. 348 (2008) 193–200,
and references therein.
Adding potassium to the Au/CeO + Al O catalyst further accel-
2
2
3
erated the formation of hydrogen in the reforming of DME, which
can be probably attributed to the promoting effect of potassium on
the water gas shift reaction
[16] F. Solymosi, R. Barthos, A. Kecskeméti, Appl. Catal. A: Gen. 350 (2008) 30–37.
[
[
17] G. Halasi, T. Bánsági, F. Solymosi, ChemCatChem 1 (2009) 311–317.
18] K. Faungnawakij, N. Shimoda, T. Fukunaga, R. Kikuchi, K. Eguchi, Appl. Catal. B:
Environ. 92 (2009) 341–350, and references therein.
[
19] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 2 (1978) 405–408.
CO + H O = CO + H
(6)
2
2
2
[20] A. Stephen, A.S.K. Hashmi, G.J. Hutchings, Angew. Chem. Int. Ed. 45 (2006)
896–7936.
[21] J.G. Hardy, M.W. Roberts, Chem. Commun. (1971) 494–495;
M.W. Roberts, T.I. Stewart, in: P. Hepple (Ed.), Proc. of Chemisorption and Catal-
ysis, Institute of Petroleum, 1970.
7
which is well-catalyzed by CeO -supported metals and Mo C
2
2
[
38]. The fact that the methane content is also reduced on the K-
dosed sample indicates that the rate of methane reforming
[
22] M. Haruta, A. Ueda, S. Tsubota, R.M. Torres Sanchez, Catal. Today 29 (1996)
43–447.
4
CH + H O = CO + 3H
(7)
4
2
2
[
[
[
23] F. Boccuzzi, A. Chiorino, M. Manzoli, J. Power Sources 118 (2003) 304–310.
24] M. Manzoli, A. Chiorino, F. Boccuzzi, Appl. Catal. B: Environ. 57 (2005) 201–209.
25] A. Nuhu, J. Soares, M. Gonzalez-Herrera, A. Watts, G. Hussein, M. Bowker, Top.
Catal. 44 (2007) 293–297.
is also enhanced on the promoted sample. We point out that
potassium, by donating electrons to adsorbed H O and CO, can
2
activate these molecules resulting in higher rates of their reaction
[26] I. Mitov, D. Klissurski, C. Minchev, Comptes. Rendus. De L. Acad. Bulgare Des
Sci. 61 (2008) 1003–1006.
[
42].
. Conclusions
i) XPS studies demonstrated that Au nanoparticles reduced at
[
[
27] A. Gazsi, T. Bánsági, F. Solymosi, Catal. Lett. 131 (2009) 33–41.
28] R. Perez-Hernández, A. Gutierrez-Martinez, C.E. Gutierez-Wing, Int. J. Hydrogen
Energy 32 (2007) 2888–2894.
5
[
[
29] P.-Y. Sheng, G.A. Bowmaker, H. Idriss, Appl. Catal. A: Gen. 261 (2004) 171–181.
30] A. Gazsi, T. Bánsági, F. Solymosi, Catal. Today, in press.
(
[31] P. Burroughs, A. Hamnett, A.F. Orchard, G. Thornton, J. Chem. Soc. Dalton Trans.
(1976) 1686–1698.
0
+
6
73 K contain Au and a small amount of Au .
[
[
[
32] E.D. Park, J.S. Lee, J. Catal. 186 (1999) 1–11.
33] A. Karpenko, R. Leppelt, V. Plzak, R.J. Behm, J. Catal. 252 (2007) 231–242.
34] T.P. Bebe Jr., J.E. Crowell, J.T. Yates Jr., J. Phys. Chem. 92 (1988) 1296–1301.
(
ii) FTIR spectroscopy revealed the formation of methoxy species
in the dissociation of DME on oxide-supported Au.
(
iii) The direction of the decomposition of DME on Au catalysts
depends on the nature of the support. Whereas Au/CeO2 catal-
[35] J.G. Chen, P. Basu, T.H. Ballinger, J.T. Yates Jr., Langmuir 5 (1989) 352–356.
36] A. Badri, C. Binet, J.C. Lavalley, G. Blanchard, J. Chem. Soc. Faraday Trans. 93
1997) 1159–1168.
[
(
yses the production of hydrogen, on Au/Al O the main process
2
3
[37] L. Bugyi, F. Solymosi, Surf. Sci. 385 (1997) 365–375.
is the hydrolysis of DME. The combination of these properties
and the use of Au/CeO –Al O composite sample led to a very
efficient catalyst for the production of hydrogen in both the
decomposition and the reforming of DME.
[38] A. Koós, R. Barthos, F. Solymosi, J. Phys. Chem. C 112 (2008) 2607–2612.
[39] F. Solymosi, G. Klivényi, J. Electr. Spectr. 64/65 (1993) 499–506.
[40] J. Raskó, F. Solymosi, Catal. Lett. 54 (1998) 49–54.
[41] F. Solymosi, Catal. Rev. 1 (1967) 233–255.
2
2
3
[42] M.P. Kiskinova, Stud. Surf. Sci. Catal. 70 (1991) 1–345.