Please do not adjust margins
New Journal of Chemistry
Page 8 of 9
DOI: 10.1039/C8NJ02426J
ARTICLE
Journal Name
measured absorbance A
0
/(A-A
0
) as a function of the inverse of the
Chem. Phys., 2014, 16, 8346; (c) H. Svobodova, V. Noponen,
E. Kolehmainen and E. Sievanen, RSC Adv., 2012, , 4985; (d)
S. –M. Lu, J. –C. Huang, G. –T. Liu, Z. –W. Lin, Y. –T. Li, X. –H.
Huang, C. –C. Huanga and S. –T. Wu, RSC Adv., 2017,
0979; (e) H. Maeda, Chem. Eur. J., 2008, 14, 11274. (f) M. –
2
guest concentration fits a linear relationship, indicating 1:1
stoichiometry of the receptor guest complex. The ratio of the
intercept to the slope was used to determine the binding constant
7
,
3
K
a
. Instead of fluorescence intensities, respective absorbance of the
O. M. Piepenbrock, G. O. Lioyd, N. Clarke and J. W. Steed,
Chem. Rev., 2010, 110, 1960.
(a) K. Ghosh and S. Panja, Supramol. Chem., 2017, 29, 350;
receptor was also used to get the binding constant values.
4
8
(b) K. Ghosh, A. Panja and S. Panja, New. J. Chem. 2016, 40,
Calculation of detection limit
3
2
476; (c) K. Ghosh, S. Panja and S. Bhattacharya, RSC. Adv.,
015, , 72772; (d) K. Ghosh and S. Panja, ChemistrySelect,
, 3667; (e) K. Ghosh and S. Panja, RSC. Adv., 2015,
12094; (f) S. Panja, S. Bhattacharya and K. Ghosh, Langmuir,
Detection limit was calculated using the UV-vis titration data. The
absorbance of 3 was measured 5 times, and the standard deviation
of blank measurement was achieved. To have the slope, absorbance
values were plotted against concentrations of analyte. The
detection limit were calculated using the equation: Detection limit =
5
1
2016,
5,
2
2
017, 33, 8277; (g) K. Ghosh and S. Panja, ChemistrySelect,
017, , 959; (h) S. Panja, S. Bhattacharya and K. Ghosh,
, 385; (i) A. Panja and K. Ghosh,
2018, DOI:
2
Mater. Chem. Front., 2018,
Supramol. Chem.,
2
3
σ/k , where σ is the standard deviation of blank measurement, and
k is the slope.
10.1080/10610278.2018.1461219; (j) S. Panja, S. Ghosh and
K. Ghosh, New J. Chem., 2018, 42, 6488.
4
f
Dye adsorption experiment
5
(a) X. X. He, J. Zhang, X. G. Liu, L. Dong, D. Li, H. Y. Qiu and S.
C. Yin, Sens. Actuators, B, 2014, 192, 29; (b) T. He, C. L. Lin, Z.
Y. Gu, L. N. Xu, A. L. Yang, Y. Y. Liu, H. J. Fang, H. Y. Qiu, J.
Zhang, S. C. Yin, Spectrochim. Acta A, 2016, 167, 66; (c) K.
Fan, J. Yang, X. Wang and J. Song, Soft Matter, 2014, 10,
8370; (d) H. Komatsu, S. Matsumoto, S. -i. Tamaru, K.
For this study, the gel of 1 [20 mg/ml] was prepared in 1:1 DMF–
O (v/v) solvent. Dye solutions were prepared in the concentration
H
2
-5
of c = 2 x 10 M in water. The dye removal efficiency (RE) of the gel
phase from its aqueous solution (2 mL) was estimated using UV-vis
spectroscopy. The final concentration of the dye in solution was
calculated according to the Beer-Lambert law (A = εcl, A is the
absorbance of the dye at a certain absorption wavelength in
solution, ε is the molar extinction coefficient and l is the path length
of the incident light). The final concentration of the dye in solution
could be obtained by the Beer-Lambert equation, which ultimately
determined the removal efficiency of the dye via the equation as:
Kaneko, M. Ikeda and I. Hamachi, J. Am. Chem. Soc., 2009,
1
31, 5580; (e) P. Xue, R. Lu, J. Jia, M. Takafuji and H. Ihara,
Chem.–Eur. J., 2012, 18, 3549; (f) X. Y. Yang, G. X. Zhang and
D. Q. Zhang, J. Mater. Chem., 2012, 22, 38.
6
(a) T. G. Jo, Y. J. Na, J. J. Lee, M. M. Lee, S. Y. Lee and C. Kim,
New J. Chem., 2015, 39, 2580; (b) S. Goswami, S. Das and K.
Aich, Tetrahedron Lett., 2013, 56, 4620; (c) K. M. Vengaian,
D. Britto, K. Sekar, G. Sivaraman and S. Singaravadivel, Sens.
Actuators, B, 2016, 235, 232, (d) S. –P. Wu, T. –H. Wang and
S. –R. Liu, Tetrahedron, 2010, 66, 9655.
RE = (C
i
– C
f
)/C
i
i
, in which C represents the initial concentration of
the dye in solution; C
f
is the final concentration of the dye in the
presence of adsorbing gel.
7
8
9
P. T. Chou, G. R. Wu, C. Y. Wei, C. C. Cheng, C. P. Chang and F.
T. Hung, J. Phys. Chem. B, 2000, 104, 7818.
A. R.Sarkar, C. H. Heo, M. Y. Park, H. W. Lee, H. M. Kim,
Chem.Commun. 2014, 50, 1309.
(a) U. Ragnarsson, Chem. Soc. Rev., 2001, 30, 205; (b) S. D.
Zelnick, D. R. Mattie and P. C. Stepaniak, Aviat. Space
Environ. Med., 2003, 74, 1285.
Acknowledgements
We AP thanks CSIR, New Delhi, India for a fellowship. KG
thanks SERB, DST, New Delhi, for financial support (File No.
EMR/2016/008005/OC).
1
0 (a) C. A. Reilly and S. D. Aust, Chem. Res. Toxicol., 1997, 10,
28; (b) International Agency for Research on Cancer. Re-
3
evaluation of some organic chemicals, hydrazine, and
hydrogen peroxide. IARC Monographs on the Evaluation of
Carcinogenic Risk of Chemicals to Humans; IARC: Lyon, 1999;
References
Vol.
iarc.fr/ENG/Monographs/vol71/mono71-43.pdf.
1 (a) Y. Tang, D. Lee, J. Wang, G. Li, J. Yu, W. Lin and J. Yoon,
Chem. Soc. Rev., 2015, 44, 5003; (b) M. G. Choi, J. O. Moon, J.
Bae, J. W. Lee and S. –K. Chang, Org. Biomol. Chem., 2013,
71,
pp
991-1013;
http://monographs.
1
(a) J. W. Steed, Chem. Soc. Rev., 2010, 39, 3686; (b)
Functional Molecular Gels, in soft matter, ed. B. Escuder and
J. F. Miravet, The Royal Society of Chemistry, Cambridge, UK,
1
2
2
014; (c) G. Yu, X. Yan, C. Han and F. Huang, Chem. Soc. Rev.,
013, 42, 6697; (d) D. B. Amabilino, D. K. Smith and J. W.
1
1
, 2961.
2 E. L. Que, D. W. Domaille and C. J. Chang, Chem. Rev., 2008,
08, 1517.
Steed, Chem. Soc. Rev. 2017, 46, 2404; (e) M. J. Webber, and
R. Langer, Chem. Soc. Rev. 2017, 46, 6600; (f) N. M.
Sangeetha and U. Maitra, Chem. Soc. Rev., 2005, 34, 821; (g)
1
1
1
3 (a) B. Sarkar, In Metal Ions in Biological Systems, H. Siegel, A.
Siegel, Eds.; Marcel Dekker: New York, 1981; Vol. 12, pp 233-
S. Datta and S. Bhattacharya, Chem. Soc. Rev., 2015, 44
,
5
2
596; (h) B. O. Okesola and David K. Smith, Chem. Soc. Rev.,
016, 45, 4226; (i) J. Bachl, J. Mayr, F. J. Sayago, C. Cativiela
2
82; (b) H. T. Ratte, Environ. Toxicol. Chem. 1999, 18, 89.
4 (a) B. Adhikari, G. Palui and A. Banerjee, Soft Matter, 2009,
452; (b) P. Chakraborty, B. Roy, P. Bairi and A. K. Nandi, J.
1
5,
and D. D. Diaz, Chem. Commun., 2015, 51, 5294.
3
2
(a) R. G. Weiss and P. Terech, Molecular Gels, Springer,
Dordrecht, 2006, pp. 978; (b) F. Fages, Low Molecular Mass
Gelators, Topics in Current Chemistry, Springer-Verlag, Berlin,
Mater. Chem., 2012, 22, 20291.
5 S. Samai and K. Biradha, Chem. Mater., 2012, 24, 1165.
6 Y.-T. Tang, X.-Q. Dou, Z.-A. Ji, P. Li, S.-M. Zhu, J.-J. Gu, C.-L.
Feng and D. Zhang, J. Mol. Liq., 2013, 177, 167.
1
1
2
005, 256, 283; (c) S. S. Babu, V. K. Praveen and A.
Ajayaghosh, Chem. Rev. 2014, 114, 1973; (d) P. A. Gale, N.
Busschaert, C. J. E. Haynes, L. E. Karagiannidis and I. L. Kirby,
Chem. Soc. Rev., 2014, 43, 205.
3
(a) C. D. Jones and J. W. Steed, Chem. Soc. Rev., 2016, 45,
6546; (b) P. Xing, X. Chu, M. Ma, S. Li and A. Hao, Phys. Chem.
8
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins