siliceous material was prepared under the same conditions with only
tetraethoxysilane (20 mmol) as the precursor.
Table 2 Catalytic results in the cyclopropanation reactiona
1 B. Lindlar, M. Lu¨chinger, A. Ro¨thlisberger, M. Haouas, G. Pirngruber,
A. Kogelbauer and R. Prins, J. Mater. Chem., 2002, 12, 528 and
references cited therein; Ch. Merckle and J. Blu¨mel, Chem. Mater., 2001,
13, 3617 and references cited therein.
2 I. F. J. Vankelecom and P. A. Jacobs, in Chiral Catalyst Immobilization
and Recycling, ed. D. E. De Vos, I. F. J. Vankelecom and P. A. Jacobs,
Wiley-VCH: Weinheim, 2000, p. 19.
3 S. Itsuno, Y. Sakurai, K. Ito, T. Maruyama, S. Nakahama and J. M.
J. Fre´chet, J. Org. Chem., 1990, 55, 304; K. Kamahori, S. Tada, K. Ito
and S. Itsuno, Tetrahedron: Asymmetry, 1995, 6, 2547; B. Altava,
M. I. Burguete, J. M. Fraile, J. I. Garc´ıa, S. V. Luis, J. A. Mayoral and
M. J. Vicent, Angew. Chem., Int. Ed., 2000, 39, 1503.
4 J. H. Clark and D. J. Macquarrie, Chem. Commun., 1998, 853.
5 A. Adima, J. J. E. Moreau and M. W. C. Man, J. Mater. Chem., 1997,
7, 2331; A. Adima, J. J. E. Moreau and M. W. C. Man, Chirality, 2000,
12, 411; P. Hesemann and J. J. E. Moreau, Tetrahedron: Asymmetry,
2000, 11, 2183; C. Bied, D. Gauthier, J. J. E. Moreau and M. W. C. Man,
J. Sol-Gel Sci. Technol., 2001, 20, 313; A. Brethon, D. Gauthier,
J. J. E. Moreau and M. W. C. Man, Tetrahedron: Asymmetry, 2004, 15,
495.
Solid Run Yield (%) trans : cis ee trans (%)b ee cis (%)b
Si-1
Si-2
a
1
2
1
2
31
3
33
30
58 : 42
59 : 41
64 : 36
62 : 38
43 (88)c
9
51 (83)c
14
53 (60)d
50
45 (50)d
43
Reaction conditions: catalyst (150 mg), styrene (5 mmol),
dichloromethane (5 ml), slow addition of ethyl diazoacetate
(5 mmol), room temperature. Results determined by GC. The
b
result in homogeneous phase with an analogous chiral ligand is
given in parentheses. The major isomers have S configuration in
c
d
C1. The major isomers have R configuration in C1.
6 J. M. Fraile, J. A. Mayoral, J. Serrano, M. A. Perica`s, L. Sola` and
D. Castellnou, Org. Lett., 2003, 5, 4333.
7 C. Baleiza˜o, B. Gigante, D. Das, M. Alvaro, H. Garcia and A. Corma,
Chem. Commun., 2003, 1860; C. Baleiza˜o, B. Gigante, D. Das,
´
M. Alvaro, H. Garcia and A. Corma, J. Catal., 2004, 223, 106;
´
M. Alvaro, M. Benitez, D. Das, B. Ferrer and H. Garc´ıa, Chem. Mater.,
2004, 16, 2222.
activity and almost the same enantioselectivity. However, the
enantioselectivity with Si-1–Cu, up to 51% ee, is still far from that
obtained in the homogeneous phase with the dihydroxymethylated
precursor (83–88% ee). This result confirms the general observa-
tion that lower enantioselectivities are obtained when the siliceous
support is prepared with a silanized chiral precursor.5–7 In
contrast, the enantioselectivity obtained with Si-2–Cu is close to
that obtained in solution with the diallylated precursor. The most
important difference between the two solids is probably the
behaviour in terms of recycling. Unfortunately Si-1–Cu is not
recoverable and loses both activity and enantioselectivity upon
reuse. However, this deactivation is not due to copper leaching, a
fact confirmed by the lack of activity for cyclopropanation in the
final solution and also by elemental analysis. As in other
heterogeneous catalysts,8–11 the deactivation may be ascribed to
poisoning of the catalytic sites by irreversible coordination of the
reaction by-products—namely maleate and fumarate derivatives
from diazoacetate dimerization and subsequent reactions. Thus,
Si-2 is the best support with regard to textural properties and
catalytic performance.
8 J. M. Fraile, J. I. Garc´ıa, J. A. Mayoral, T. Tarnai and M. A. Harmer,
J. Catal., 1999, 186, 214; J. M. Fraile, J. I. Garc´ıa, M. A. Harmer,
C. I. Herrer´ıas, J. A. Mayoral, O. Reiser and H. Werner, J. Mater.
Chem., 2002, 12, 3290; J. M. Fraile, J. I. Garc´ıa, C. I. Herrer´ıas,
J. A. Mayoral and M. A. Harmer, J. Catal., 2004, 221, 532; J. M. Fraile,
J. I. Garc´ıa, C. I. Herrer´ıas, J. A. Mayoral, O. Reiser, A. Socue´llamos
and H. Werner, Chem. Eur. J., 2004, 10, 2997.
9 J. M. Fraile, J. I. Garc´ıa, C. I. Herrer´ıas, J. A. Mayoral, D. Carrie´ and
M. Vaultier, Tetrahedron: Asymmetry, 2001, 12, 1891; J. M. Fraile,
J. I. Garc´ıa, C. I. Herrer´ıas, J. A. Mayoral, S. Gmough and M. Vaultier,
Green Chem., 2004, 6, 93; J. M. Fraile, J. I. Garc´ıa, C. I. Herrer´ıas,
J. A. Mayoral, O. Reiser and M. Vaultier, Tetrahedron Lett., 2004, 45,
6765.
10 M. I. Burguete, J. M. Fraile, J. I. Garc´ıa, E. Garc´ıa-Verdugo, S. V. Luis
and J. A. Mayoral, Org. Lett., 2000, 2, 3905; E. D´ıez-Barra, J. M. Fraile,
J. I. Garc´ıa, E. Garc´ıa-Verdugo, C. I. Herrer´ıas, S. V. Luis,
J. A. Mayoral, P. Sa´nchez-Verdu´ and J. Tolosa, Tetrahedron:
Asymmetry, 2003, 14, 773.
11 M. I. Burguete, J. M. Fraile, J. I. Garc´ıa, E. Garc´ıa-Verdugo,
C. I. Herrer´ıas, S. V. Luis and J. A. Mayoral, J. Org. Chem., 2001,
66, 8893.
In conclusion, we have demonstrated that it is possible to
prepare organic–inorganic hybrid materials with silanized chiral
precursors as hydrolysis-sensitive as bis(oxazolines). The textural
properties and the catalytic performances of the resulting solids are
dependent on the nature of both the substituents of the chiral
ligand and the spacer. These results open the way for the synthesis
of higher performance catalysts and further work is being carried
out to obtain better solid supports for enantioselective catalysis.
This work was made possible by the generous financial support
of the C.I.C.Y.T. (Project PPQ2002–04012) and the Diputacio´n
General de Arago´n.
12 Grafting has also been used by other groups to immobilize bis(oxazo-
line)–copper complexes on silica (see also ref. 13): R. J. Clarke and
I. J. Shannon, Chem. Commun., 2001, 1936; J. K. Park, S.-W Kim,
T. Hyeon and B. M. Kim, Tetrahedron: Asymmetry, 2001, 12, 2931;
A. Corma, H. Garc´ıa, A. Moussaif, M. J. Sabater, R. Zniber and
A. Redouane, Chem. Commun., 2002, 1058; A. Lee, W. Kim, J. Lee,
T. Hyeon and B. M. Kim, Tetrahedron: Asymmetry, 2004, 15, 2595.
13 D. Rechavi and M. Lemaire, J. Mol. Catal. A, 2002, 3, 2493; D. Rechavi
and M. Lemaire, Org. Lett., 2002, 182–183, 239.
14 L. N. Lewis, J. Am. Chem. Soc., 1990, 112, 5998; L. N. Lewis and
C. A. Sumpter, J. Mol. Catal. A, 1996, 104, 293.
15 P. T. Tanev and T. J. Pinnavaia, Chem. Mater., 1996, 8, 2068.
16 D. J. Macquarrie, D. B. Jackson, S. Tailland and K. A. Utting, J. Mater.
Chem., 2001, 11, 1843.
17 D. J. Macquarrie, Chem. Commun., 1996, 1961; R. J. P. Corriu,
C. Hoarau, A. Mehdi and C. Reye´, Chem. Commun., 2000, 71; R. Huq,
L. Mercier and P. J. Kooyman, Chem. Mater., 2001, 13, 4512.
18 D. J. Macquarrie, D. B. Jackson, J. E. G. Mdoe and J. H. Clark, New J.
Chem., 1999, 23, 539.
19 Y. Mori and T. J. Pinnavaia, Chem. Mater., 2001, 13, 2173.
20 R. J. P. Corriu, E. Lancelle-Beltran, A. Mehdi, C. Rey´e, S. Brande`s and
R. Guilard, J. Mater. Chem., 2002, 12, 1355.
Notes and references
{ Tetraethoxysilane (3.76 g, 18 mmol) and the bis(triethoxysilyl)-bis(oxazo-
line) (1 mmol) were added separately, but simultaneously, to a stirred clear
solution of 1-dodecylamine (1.01 g, 2.5 mmol) in a mixture of ethanol
(9.2 ml) and water (11 ml). The mixture was vigorously stirred for 18 h at
room temperature. The solid was filtered off, thoroughly washed with
ethanol, and dried under vacuum at 50 uC for 24 h. An analogous fully
21 L. Mercier and T. J. Pinnavaia, Chem. Mater., 2000, 12, 188.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 4669–4671 | 4671