Pseudophase Model for Reactivity in Reverse Micelles
J. Phys. Chem., Vol. 100, No. 30, 1996 12643
(4) (a) Zhu, X. X.; Bardez, E.; Dallery, L.; Larrey, B.; Valeur, B. New
J. Chem. 1992, 16, 973. (b) Aliotta, F.; Migliardo, P.; Donato, D. I.; Turco-
Liveri, V.; Bardez, E.; Larrey, B. Progr. Colloid Polym. Sci. 1992, 89, 258.
(5) Luisi, P. L.; Giomini, M.; Pileni, M. P.; Robinson, B. H. Biochim.
Biophys. Acta 1988, 947, 209.
is in progress to extend this model to the understanding of the
reactivity of bound water molecules in these microorganized
media.
(6) Llor, A.; Rigny, P. J. Am. Chem. Soc. 1986, 108, 7533.
(7) El Seoud, O. A.; El Seoud, M. I.; Mickiewicz, J. A. J. Colloid
Interface Sci. 1994, 163, 87.
(8) Breslow, R. Acc. Chem. Res. 1991, 24, 159. Li, C. J. Chem. ReV.
1993, 93, 2023.
(9) Blokzijl, W.; Engberts, J. B. F. N. Angew. Chem., Int. Ed. Engl.
1993, 32, 1545.
(10) Valiente, M.; Rodenas, E. J. Phys. Chem. 1991, 95, 3368. Moya,
M. L.; Izquierdo, C.; Casado, J. Ibid. 1991, 95, 6001. Khmelnitsky, Y. L.;
Noverova, I. N.; Polyakov, V. I.; Grinberg, V. Y.; Levashov, A. V.;
Martinek, K. Eur. J. Biochem. 1990, 190, 155.
(11) Bunton, C. A.; Nome, F.; Quina, F. H.; Romsted, L. S. Acc. Chem.
Res. 1991, 24, 357. Bunton, C. A.; Savelli, G. AdV. Phys. Org. Chem.
1986, 22, 213 and references therein.
(12) Garcia-Rio, L.; Leis, J. R.; Pena, M. E.; Iglesias, E. J. Phys. Chem.
1993, 97, 3437.
Experimental Section
Materials. AOT (Sigma) was of the highest purity available
and used without further purification after drying in a vacuum
desiccator over P2O5 for two days. 2,2,4-Trimethylpentane
(isooctane, Aldrich) was of spectrophotometric grade. 1-Octene
was used as supplied. Bromine and sodium bromide were
Suprapur Merck. A stock solution of bromine (1 mL) in 25
mL of CCl4 was prepared shortly before use under protection
from external light.
Typical Preparation of Microemulsion. Microemulsions
with a constant z value and variable w values were prepared by
addition of the calculated amounts of 0.1 M NaBr solution in
distilled water to an isooctane-AOT solution of known mo-
larity. The microemulsion composition was checked by weigh-
ing. Usually, 50 mL of AOT solution in isooctane was weighed
in a closed vessel and weighed again after addition of the water
solution. The microemulsion obtained was pretreated by
addition of small amounts of bromine solution in CCl4 in order
to eliminate traces of bromine-consuming impurities. The
“presaturation” with bromine was controlled by UV at 270 nm.
This “mother” microemulsion was further used for the prepara-
tion of the series of three different concentrations of alkene used
for the determination of k2app. The density was determined by
weighing 10 mL of the microemulsion in volumetric flasks, and
the concentration of the alkene by weighing a syringe containing
40-120 µL of 1-octene. The final concentrations of 1-octene
were in the 10-2 M range.
Typical Kinetic Runs. All kinetic runs were performed on
a Hi-tech stopped-flow spectrophotometer thermostated at 25.0
( 0.1 °C and equipped with a data acquisition system. One
syringe of the apparatus contained microemulsion with bromine
and the other microemulsion with 1-octene. The reaction was
followed by the decrease of absorbance due to Br3- at 290 nm
instead at the maximum of absorbance at 270 nm as better
conditions for the work of the photomultiplier could be obtained.
Pseudo-first-order rate constants kexp were calculated from the
monoexponential kinetic signals by the Marquardt procedure41
for least squares nonlinear curve fitting.
(13) Garcia-Rio, L.; Leis, J. R.; Iglesias, E. J. Phys. Chem. 1995, 99,
12318.
(14) Lopez, P.; Rodriguez, A.; Munoz, E.; Gomez-Herrera, C.; Sanchez,
F.; Moya, M. L. J. Colloid Interface Sci. 1994, 166, 503.
(15) Ruasse, M. F. AdV. Phys. Org. Chem. 1993, 28, 207.
(16) Chevalier, Y.; Zemb, T. Rep. Prog. Phys. 1990, 53, 279.
(17) Pernot, P.; Pansu, R.; Levy, B.; Faure, J. J. Chem. Phys. 1993,
177, 793.
(18) Ruasse, M. F.; Motallebi, S.; Galland, B. J. Am. Chem. Soc. 1991,
113, 3440.
(19) Jada, A.; Lang, J.; Zana, R. J. Phys. Chem. 1989, 93, 10. Jada,
A.; Lang, J.; Zana, R.; Makloufi, R.; Hirsch, E.; Candau, S. Ibid. 1990, 94,
387. Lang, J.; Mascolo, G.; Zana, R.; Luisi, P. L. Ibid. 1990, 94, 3069.
(20) Ruasse, M. F.; Aubard, J.; Galland, B.; Adenier, A. J. Phys. Chem.
1986, 90, 4382.
(21) Eigen, M.; Kustin, K. J. Am. Chem. Soc. 1962, 84, 1355.
(22) Byrnell, C. J. A.; Coombes, R. G.; Hart, L. S.; Whiting, M. C. J.
Chem. Soc., Perkin Trans 2 1983, 1079.
(23) Warner, P.; La Rose, R.; Schleis, T. Tetrahedron Lett. 1976, 4443.
(24) Kawai, T.; Hamada, K.; Shindo, N.; Kon-No, K. Bull. Chem. Soc.
Jpn. 1992, 65, 2515.
(25) Zulauf, M.; Eicke, H. F. J. Phys. Chem. 1979, 83, 480.
(26) Bellucci, G.; Bianchini, R.; Ambrosetti, R.; Ingrosso, G. J. Org.
Chem. 1985, 50, 3313.
(27) Schantz, M. N.; Martire, D. E. J. Chromatogr. 1987, 391, 35.
(28) Tohyama, I.; Otoza¨ı, K. Frezenius Anal. Chem. 1978, 293, 282.
(29) Measured by couloamperometry at (20% (Dubois, J. E.; Ruasse,
M. F.; Poupard, D. J. Electroanal. Chem. 1983, 152, 85). This value agrees
with that previously measured for 1-pentene bromination in the same solvent
(Garnier, F.; Dubois, J. E. Bull. Soc. Chim. Fr. 1968, 3797).
(30) Ruasse, M. F.; Blagoeva, I. B.; Krys, S.; Sebastian-Gambaro, M.
A. J. Chem. Soc., Perkin Trans. 2 1993, 1283.
(31) Lennox, R. B.; Mc Clelland, R. A. J. Am. Chem. Soc. 1986, 108,
3771.
(32) Cerichelli, G.; Grande, C.; Luchetti, L.; Mancini, G. J. Org. Chem.
1991, 56, 3025.
(33) Cerichelli, G.; Grande, C.; Luchetti, L.; Mancini, G.; Bunton, C.
A. J. Org. Chem. 1987, 52, 5167.
(34) Garcia-Rio, L.; Mejuto, J.; Ruasse, M. F. Unpublished results. A
strong charge transfer band, λmax ) 290 nm, appears in the bromine spectrum
when AOT is added to bromine solutions in isooctane.
(35) Biasutti, M. A.; Sereno, L.; Silber, J. J. J. Colloid Interface Sci.
1994, 164, 410.
Acknowledgment. We gratefully acknowledge Professor J.
R. Leis and his group for helpful suggestions and stimulating
discussion. We are indebted to Professor A. Lattes and Dr. I.
Rico-Lattes, whose pioneer work inspired this research. I.B.B.
would like to thank CNRS and the University of Paris 7 for the
award of a Research Associateship.
(36) Ruasse, M. F.; Motallebi, S. J. Phys. Org. Chem. 1991, 4, 527.
(37) Wong, M.; Gra¨tzel, M.; Thomas, J. K. J. Am. Chem. Soc. 1976,
98, 2391. Keh, E.; Valeur, B. J. Colloid Interface Sci. 1981, 79, 465. Zinsli,
P. E. J. Phys. Chem. 1983, 83, 3223.
(38) Rico, I.; Halvorsen, K.; Dubrule, C.; Lattes, A. J. Org. Chem. 1994,
59, 415. Gautier, M.; Rico, I.; Lattes, A. Ibid. 1990, 55, 1500.
(39) Chinelatto, A. M.; Fonseca, M. T. M.; Kiyan, N. Z.; El Seoud, O.
A. Ber. Bunsen-Ges. Phys. Chem. 1990, 94, 882.
References and Notes
(1) The term “reverse micelles” is used here for aggregates in which
the water is interfacial only, i.e. in strong interaction with surfactant head
groups and counterions. “Microemulsions”, sometimes called swollen
micelles, refers to aggregates containing a core water phase more or less
analogous to bulk water.
(2) Schwuger, M. J.; Stickdorn, K.; Schoma¨cker, R. Chem. ReV. 1995,
95, 849.
(40) Bardez, E.; Monnier, E.; Valeur, B. J. Phys. Chem. 1985, 89, 5031.
(41) Marquardt, D. W. J. Soc. Ind. Appl. Math. 1963, 11, 431.
(3) Structure and Reactivity in Reverse Micelles; Pileni, M. P., Ed.;
Elsevier: Amsterdam, 1989.
JP960772A