Page 9 of 11
Journal of the American Chemical Society
Enantioselective Catalysis of Photochemical Reactions. Angew.
Experimental details, procedures, compound characterization
data, computational details, copies of 1H and 13C NMR spectra
of new compounds. This material is available free of charge via
Chem. Int. Ed. 2015, 54, 3872-3890; (c) Silvi, M.; Melchiorre, P.,
Enhancing the potential of enantioselective organocatalysis with
light. Nature 2018, 554, 41-49.
8. Proctor, R. S. J.; Davis, H. J.; Phipps, R. J., Catalytic
enantioselective Minisci-type addition to heteroarenes. Science
2018, 360, 419-422.
9. Liu, X.; Liu, Y.; Chai, G.; Qiao, B.; Zhao, X.; Jiang, Z.,
Organocatalytic Enantioselective Addition of α-Aminoalkyl
Radicals to Isoquinolines. Org. Lett. 2018, 20, 6298-6301.
1
2
3
4
5
6
7
AUTHOR INFORMATION
Corresponding Authors
8
9
10. For selected examples of application of non-covalent
catalysis in enantioselective radical chemistry, see: (a) Bauer, A.;
Westkamper, F.; Grimme, S.; Bach, T., Catalytic enantioselective
reactions driven by photoinduced electron transfer. Nature 2005,
436, 1139-1140; (b) Müller, C.; Bauer, A.; Maturi, M. M.; Cuquerella,
M. C.; Miranda, M. A.; Bach, T., Enantioselective Intramolecular
[2 + 2]-Photocycloaddition Reactions of 4-Substituted Quinolones
Catalyzed by a Chiral Sensitizer with a Hydrogen-Bonding Motif.
J. Am. Chem. Soc. 2011, 133, 16689-16697; (c) Rono, L. J.; Yayla, H.
G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R.,
Enantioselective Photoredox Catalysis Enabled by Proton-
Coupled Electron Transfer: Development of an Asymmetric Aza-
Pinacol Cyclization. J. Am. Chem. Soc. 2013, 135, 17735-17738; (d)
Alonso, R.; Bach, T., A Chiral Thioxanthone as an Organocatalyst
for Enantioselective [2+2] Photocycloaddition Reactions Induced
by Visible Light. Angew. Chem. Int. Ed. 2014, 53, 4368-4371; (e)
Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T., Synergistic Catalysis
of Ionic Brønsted Acid and Photosensitizer for a Redox Neutral
Asymmetric α-Coupling of N-Arylaminomethanes with
Aldimines. J. Am. Chem. Soc. 2015, 137, 13768-13771; (f) Tröster, A.;
Alonso, R.; Bauer, A.; Bach, T., Enantioselective Intermolecular [2
+ 2] Photocycloaddition Reactions of 2(1H)-Quinolones Induced
by Visible Light Irradiation. J. Am. Chem. Soc. 2016, 138, 7808-7811;
(g) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-
Y., A Dual-Catalytic Strategy To Direct Asymmetric Radical
Aminotrifluoromethylation of Alkenes. J. Am. Chem. Soc. 2016,
138, 9357-9360; (h) Lin, L.; Bai, X.; Ye, X.; Zhao, X.; Tan, C.-H.;
Jiang, Z., Organocatalytic Enantioselective Protonation for
Photoreduction of Activated Ketones and Ketimines Induced by
Visible Light. Angew. Chem. Int. Ed. 2017, 56, 13842-13846; (i) Liu,
Y.; Liu, X.; Li, J.; Zhao, X.; Qiao, B.; Jiang, Z., Catalytic
enantioselective radical coupling of activated ketones with N-aryl
glycines. Chem. Sci. 2018, 9, 8094-8098; (j) Gentry, E. C.; Rono, L.
J.; Hale, M. E.; Matsuura, R.; Knowles, R. R., Enantioselective
Synthesis of Pyrroloindolines via Noncovalent Stabilization of
Indole Radical Cations and Applications to the Synthesis of
Alkaloid Natural Products. J. Am. Chem. Soc. 2018, 140, 3394-3402;
(k) Cao, K.; Tan, S. M.; Lee, R.; Yang, S.; Jia, H.; Zhao, X.; Qiao, B.;
Jiang, Z., Catalytic Enantioselective Addition of Prochiral Radicals
to Vinylpyridines. J. Am. Chem. Soc. 2019, 141, 5437-5443; (l)
Zheng, J.; Swords, W. B.; Jung, H.; Skubi, K. L.; Kidd, J. B.; Meyer,
G. J.; Baik, M.-H.; Yoon, T. P., Enantioselective Intermolecular
Excited-State Photoreactions Using a Chiral Ir Triplet Sensitizer:
Separating Association from Energy Transfer in Asymmetric
Photocatalysis. J. Am. Chem. Soc. 2019, 141, 13625-13634.
Author Contributions
§ J.P.R. and R.S.J.P. contributed equally.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ACKNOWLEDGMENT
R.S.J.P. is grateful to GlaxoSmithKline and the EPSRC for a
CASE PhD studentship. R.J.P. is grateful to the Royal Society
for a University Research Fellowship and the ERC for funding
(StG 757381). J.P.R. thanks the EU Horizon 2020 Marie
Skłodowska-Curie Fellowship (grant no. 792144) and M.S.S
thanks the NIH (1 R01 GM121383) for support of this work.
Computational resources were provided from the Center for
High Performance Computing (CHPC) at the University of
Utah and the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by the NSF (ACI-
1548562) and provided through allocation TG-CHE180003. We
are We are grateful to Dr. Andrew Bond (University of
Cambridge) for solving and refining the X-ray crystal
structure, to Dr. Holly J. Davis for initial experiments and
Jonathan Taylor (GSK) for useful discussion.
REFERENCES
1. (a)
Minisci, F.; Vismara, E.; Fontana, F., Recent
Developments of Free-Radical Substitutions of Heteroaromatic
Bases. Heterocycles 1989, 28, 489-519; (b) Minisci, F.; Fontana, F.;
Vismara, E., Substitutions by nucleophilic free radicals: A new
general reaction of heteroaromatic bases. J. Heterocyclic Chem.
1990, 27, 79-96.
2. (a) Duncton, M. A. J., Minisci reactions: Versatile CH-
functionalizations for medicinal chemists. Med. Chem. Commun.
2011, 2, 1135-1161; (b) Vitaku, E.; Smith, D. T.; Njardarson, J. T.,
Analysis of the Structural Diversity, Substitution Patterns, and
Frequency of Nitrogen Heterocycles among U.S. FDA Approved
Pharmaceuticals. J. Med. Chem. 2014, 57, 10257-10274.
3. Proctor, R. S. J.; Phipps, R. J., Recent Advances in Minisci-
Type Reactions. Angew. Chem. Int. Ed. 2019, 58, 13666-13699.
4. Sun, A. C.; McAtee, R. C.; McClain, E. J.; Stephenson, C. R. J.,
Advancements in Visible-Light-Enabled Radical C(sp)2–H
Alkylation of (Hetero)arenes. Synthesis 2019, 51, 1063-1072.
5. Yan, M.; Kawamata, Y.; Baran, P. S., Synthetic Organic
Electrochemical Methods Since 2000: On the Verge of a
Renaissance. Chem. Rev. 2017, 117, 13230-13319.
6. (a) Tauber, J.; Imbri, D.; Opatz, T., Radical Addition to
Iminium Ions and Cationic Heterocycles. Molecules 2014, 19,
16190; (b) O’Hara, F.; Blackmond, D. G.; Baran, P. S., Radical-
Based Regioselective C–H Functionalization of Electron-Deficient
Heteroarenes: Scope, Tunability, and Predictability. J. Am. Chem.
Soc. 2013, 135, 12122-12134.
11. (a) Milo, A.; Neel, A. J.; Toste, F. D.; Sigman, M. S., A data-
intensive approach to mechanistic elucidation applied to chiral
anion catalysis. Science 2015, 347, 737-743; (b) Zhao, S.; Gensch,
T.; Murray, B.; Niemeyer, Z. L.; Sigman, M. S.; Biscoe, M. R.,
Enantiodivergent Pd-catalyzed C–C bond formation enabled
through ligand parameterization. Science 2018, 362, 670-674.
12. (a) Keylor, M. H.; Niemeyer, Z. L.; Sigman, M. S.; Tan, K. L.,
Inverting Conventional Chemoselectivity in Pd-Catalyzed Amine
Arylations with Multiply Halogenated Pyridines. J. Am. Chem.
Soc. 2017, 139, 10613-10616; (b) Toste, F. D.; Sigman, M. S.; Miller,
S. J., Pursuit of Noncovalent Interactions for Strategic Site-
Selective Catalysis. Acc. Chem. Res. 2017, 50, 609-615.
7. For relevent reviews on enantioselective radical chemistry,
see: (a) Sibi, M. P.; Manyem, S.; Zimmerman, J., Enantioselective
Radical Processes. Chem. Rev. 2003, 103, 3263-3296; (b)
Brimioulle, R.; Lenhart, D.; Maturi, M. M.; Bach, T.,
ACS Paragon Plus Environment