4
Tetrahedron Letters
[3] R. K. Howe, B. R. Shelton, J. Org. Chem. 55 (1990) 4603–4607.
[4] R. S. Compagnone, R. Avila, E.J. Nat. Prod. 62 (1999)
1443–1444.
Table 1. Optimization of reaction conditions
[5] A. Mándi et al. J. Nat. Prod. 2015 pp 2051.
[6] K. Moody, R. H. Thomson, E. Fattorusso,.J. Chem. Soc., Perkin
Trans. 11972, 18–24.
[7] S. P. Gunaserkera, S.S.J.Cross, Nat. Prod. 55 (1992) 509–512.
[8] M. Rotem, S. Carmely, Y. Kashman, Y. Loya, Tetrahedron. 39
(1983) 667–676.
Sl.No
Solvent
Conditions
Yield
1
ACN
ACN
ACN
Na2CO3, RT, 64h
Cs2CO3, RT, 48h
K2CO3, RT, 48h
32%
22%
32%
2.
3
[9] R. P. Hertzberg, P. B. Dervan, Biochemistry, 23 (1984) 3934-
3945.
4
ACN
NaOH, RT, 48h
10%
[10] R. Martinez, L. Chacon-Garcia, Curr. Med. Chem.12 (2005)
127-151.
5
DCM
Na2CO3, RT, 48h
60%
[11] I. Wilson, P. Wardman, T.S. Lin, A.C. Sartorelli,J. Med.
Chem. 29 (1986) 1381-1384.
[12] X. LWang, K. Wan, C. H. Zhou, Eur. J. Med. Chem.45 (2010)
4631-4639.
[13] P. Ravi Kumar, Manoranjan Behera, K. Raghavulu, A. Jaya
Shree, Satyanarayana Yennam; Tetrahedron Letters 53 (2012)
4108–4113.
[14] K. Jones M. Swapnaja, Satyanarayana Yennam, Murthy
Chavali, Y.Poornachandra, C.Ganesh Kumar, Krubakaran
Muthusamy, Venkatesh Babu Jayaraman, Premkumar
Arumugam, Sridhar Balasubramanian, Kiran Kumar Sriram
European Journal of Medicinal Chemistry. 117, (2016) 85-98.
[15] Anjaiah Aitha, Satyanarayana Yennam, Manoranjan Behera,
Jayashree Anireddy., Tetrahedron Letters., 57, (2016),
1507–1510.
[16] Nagaraju Payili, Satyanarayana Yennam, Santhosh Reddy
Rekula, Challa Gangu Naidu, Yamini Bobde, Balaram Ghosh.,
J. Heterocyclic Chem., 55 (2018)1358-1365.
[17] (a) C. B. Tripathi and S. Mukherjee, Angew. Chem. Int. Ed.,52
(2013) 8450; (b) M. Gao, Y. Li, Y. Gan and B. Xu, Angew.
Chem., Int. Ed. 54 (2015), 8795; (c) A. Yoshimura, K. R.
Middleton, A. D. Todora, B. J. Kastern, S. R. Koski, A.
Maskaev, Org. Lett., 15 (2013) 4010.
6
7
DCM
DCM
DCM
CHCl3
CHCl3
CHCl3
CHCl3
THF
Cs2CO3, RT, 48h
K2CO3, RT, 48h
NaOH, RT, 48 h
Na2CO3, RT, 48h
Cs2CO3, RT, 48 h
K2CO3, RT, 48h
NaOH, RT, 48h
Na2CO3, RT, 48h
Cs2CO3, RT, 48h
25%
48%
15%
40%
28%
52%
12%
25%
10%
8
9
10
11
12
13
14
THF
15
16
THF
THF
K2CO3, RT, 48h
NaOH, RT, 48h
10%
traces
In conclusion we synthesized a series of novel
spirobioxazoline dibenzoquinone derivatives via [3+2]
double 1, 3 dipolar cycloaddition reaction. Hence
quinones of spirobiisoxazoline scaffolds are featured in a
range of natural and synthetic products with wide-
reaching biological activities and useful synthetic
intermediates for organic synthesis, spirobiisoxazoline
dibenzoquinone based compounds have the ability to
become drugs of immense use.
[18] S. Minakata, S. Okumura, T. Nagamachi and Y.Takeda,
Org. Lett. 13 (2011) 2966.
[19] R. Rios, Chem. Soc. Rev. 41 (2012) 1060.
[20] M. A. Arai, T. Arai and H. Sasai, Org. Lett.1 (1999) 1795.
[21] (a) Y. Wei and M. Shi, Chem. – Asian J. 9 (2014), 2720; (b)
C. Pei and M. Shi, Chem. – Eur. J. 18 (2012), 6712.
[22] (a) G. Zecchi, J. Org. Chem. 44 (1979), 2796; (b) L. Bruché,M.
L. Gelmi and G. Zecchi, J. Org. Chem. 50 (1985) 3206; (c) G.
Broggini, G. Molteni and G. Zecchi, J. Org. Chem.59 (1994),
8271.
[23] H. Liu, H. Jia, B. Wang, Y. Xiao and H. Guo, Org. Lett. 19
(2017) 4714.
[24] Xinye Shang, Kun Liu, Zhongyin ZhanG, Pengfei Li and
Wenjun Li.; Org. Biomol. Chem.16 (2018) 895.
Acknowledgements
Authors are grateful to GVK Biosciences Pvt. Ltd. for
the financial support and encouragement. Help from the
analytical department for the analytical data is
appreciated. We thank Dr. Sudhir Kumar Singh for his
invaluable support and motivation.
References
[1] J. Kobayashi, M. Tsuda, K. Agemi, J. Vacelet,Tetrahedron. 47
(1991) 6617-6622.
[2] D. James, H. B. Kunze, D. Faulker, J. Nat. Prod. 54 (1990)
1137-1140.