6922
K. Viswanathan et al. / Bioorg. Med. Chem. Lett. 22 (2012) 6919–6922
Table 1
Acknowledgment
Biological evaluation of viridin analogs
Compound
IC50,p110
a/p85
a
(nM)
IC50, MCF-7 (
lM)
We thank the American Cancer Society (RSG-04-267-01) for
support of this work.
2
11
12
338.9
177.5
270.5
11.9
22.9
>100
37.7
>100
Supplementary data
Wortmannin
Supplementary data associated with this article can be found, in
from increased flexibility in the binding mode and the placement
of an additional polar hydroxyl group. This truncated analog may
serve as an excellent starting point for new inhibitor development
as the small size would easily allow the introduction of a wide
range of substituents to increase potency or selectivity.
References and notes
1. Willems, L.; Tamburini, J.; Chapuis, N.; Lacombe, C.; Mayeux, P.; Bouscary, D.
Curr. Oncol. Rep. 2012, 14, 129.
The finding that these analogs maintained sub-micromolar lev-
els of enzyme inhibition prompted us to evaluate them for poten-
tial antiproliferative effects in a breast cancer cell line (MCF-7).
Although there is a strong link between PI-3K dysregulation and
breast cancer,19–21 our results show that wortmannin was not
effective against this particular cell line. This observation is in
accord with previous reports.22,23 However, the steroid-derived
analog 2 and the ring-opened variant 12 both showed reasonable
levels of activity against this line with IC50 values of 22.9 and
2. Fruman, D. A.; Meyers, R. E.; Cantley, L. C. Ann. Rev. Biochem. 1998, 67, 481.
3. Chen, Y.; Wang, B. C.; Xiao, Y. J. Cell. Physiol. 2011, 227, 2818.
4. Sundstrom, T.; Anderson, A.; Wright, D. L. Org. Biomol. Chem. 2009, 7, 840.
5. Norman, B. H.; Shih, C.; Toth, J. E.; Ray, J. E.; Dodge, J. A.; Johnson, D. W.;
Rutherford, P. G.; Schultz, R. M.; Worzalla, J. F.; Vlahos, C. J. J. Med. Chem. 1996,
39, 1106.
6. Nuss, J. M.; Tsuhako, A.; Anand, N. K. Ann. Rep. Med. Chem. 2009, 44, 339.
7. Ihle, N. T.; Williams, R.; Chow, S.; Chew, W.; Berggren, M. I.; Paine-Mrrieta, G.;
Minion, D. J.; Halter, R. J.; Wipf, P.; Abraham, R.; Kirkpatrick, L.; Powis, G. Mol.
Cancer Ther. 2004, 3, 763.
8. Zask, A.; Kaplan, J.; Toral-Barza, L.; Hollander, I.; Young, M.; Tischler, M.;
Gaydos, C.; Cinque, M.; Lucas, J.; Yu, K. J. Med. Chem. 2008, 51, 1319.
9. Sato, S.; Nakada, M.; Shibasaki, M. Tetrahedron Lett. 1996, 37, 6141.
10. Mizutani, T.; Honzawa, S.; Tosaki, S.; Shibasaki, M. Angew. Chem., Int. Ed. 2002,
41, 4680.
37.7 lM respectively. The truncated analog 11 proved inactive in
the cellular assay which may relate to the poor permeability of this
relatively polar compound (logP = 0.58 versus 2.65 for compound
2). Although the origins of the activity differences between wort-
mannin and 2 require further investigation, it does illustrate that
subtle structural changes can have a significant impact on cellular
activity.
11. Shigehisa, H.; Mizutani, T.; Tosaki, S.; Ohshima, T.; Shibasaki, M. Tetrahedron
2005, 61, 5057.
12. Anderson, E. A.; Alexanian, E. J.; Sorensen, E. J. Angew. Chem., Int. Ed. 2004, 43,
1998.
13. Hodson, H. F.; Madge, D. J.; Widdowson, D. A. J. Chem. Soc. Perkin Trans. 1 1995,
1, 2965.
The viridins are potent and highly complex inhibitors of PI-3K
that act by promoting the addition of a nucleophilic active site
lysine to an unusual electrophilic furan. As the potential of PI-3K
as a drug target in cancer has received increased attention, there
is a need for direct and flexible routes to new inhibitors. We have
described the use of abundant steroid and steroid-like building
blocks for the preparation of viridin analogs. These first-generation
prototype molecules maintain sub-micromolar levels of enzyme
inhibition and interestingly show improved anti-proliferative
activity against a breast cancer line. The easy availability of the
starting materials and relatively short routes should allow for the
preparation of several new analogs to improve enzyme potency
and anti-proliferative activity.
14. Ali, H.; Van Lier, J. E. J. Chem. Soc. Perkin Trans. 1 1991, 2485.
15. Majeed, A. J.; Antonsen, O.; Benneche, T.; Undheim, K. Tetrahedron 1989, 45,
993.
16. Kraus, G. A.; Wan, Z. Synlett 2000, 363.
17. Wipf, P.; Minion, D. J.; Halter, R. J.; Berggren, M. I.; Ho, C. B.; Chiang, G. G.;
Kirkpatrick, L.; Abraham, R.; Powis, G. Org. Biomol. Chem. 1911, 2004, 2.
18. Walker, E. H.; Pacold, M. E.; Perisic, O.; Stephens, L.; Hawkins, P. T.; Whymann,
M. P.; Williams, R. Mol. Cell 2000, 6, 909.
19. Osaki, M.; Oshimura, M.; Ito, H. Apoptosis 2004, I, 667.
20. Gershtein, E. S.; Scherbakov, A. M.; Shatskaya, V. A.; Kushlinsky, N. E.;
Krasilnikov, M. A. Anticancer Res. 2007, 27, 1777.
21. Granville, C. A.; Memmott, R. M.; Gills, J. J.; Dennis, P. A. Clin. Cancer Res. 2006,
12, 679.
22. Lemke, L. E.; Paine-Murrieta, G. D.; Taylor, C. W.; Powis, G. Cancer Chemother.
Prmacol. 1999, 44, 491.
23. Sabnis, G. J.; Jelovac, D.; Long, B.; Brodie, A. Cancer Res. 2005, 65, 3903.