˚
˚
M ¼ 891.72, orthorhombic Imma; a ¼ 15.2248(3) A, b ¼ 36.4392(7) A,
mL), methanol (0.5 mL), 3,5-lutidine (11.3 mL), HMTA (100 mL, 1.4
MinH2O) and HNO3 (0.4 mL, 2.8 M in DMF) heated at 1.5 ꢀCminꢁ1
to 105 ꢀC for 24 hours afforded single crystals of [Cu2(BIPA-TC)(3,5-
lutidine)2]n,2b (ESI†).‡ Compound 2b is isostructural with 2a but
3,5-lutidine is coordinated to the paddlewheel moieties (Cu/
c ¼ 10.3036(2) A, V ¼ 5716.23(19) A , Z ¼ 4, Dcalcd ¼ 1.036 Mg mꢁ3, m ¼
1.352ꢁ1, GOF ¼ 1.032, final R1 ¼ 0.0375, wR2 ¼ 0.1018 [for 2594 data I >
2s(I)]. Crystal data for 2b at 183(2) K: Cu2C44H28N4O12, M ¼ 931.78,
3
˚
˚
˚
˚
˚
orthorhombic, Imma; a ¼ 14.981(21) A, b ¼ 36.371(5) A, c ¼ 10.922(2) A,
V ¼ 5951.1(16) A , Z ¼ 4, Dcalcd ¼ 1.040 Mg mꢁ3, m ¼ 0.763 mmꢁ1
,
3
˚
GOF ¼ 1.039, final R1 ¼ 0.0429, wR2 ¼ 0.1238 [for 2922 data I > 2s(I)].
˚
Cu d ¼ 2.6780(7) A).
1 P. Vishweshwar, J. A. McMahon, J. A. Bis and M. J. Zaworotko, J.
Pharm. Sci., 2006, 95, 499–516.
2 G. Ferey, Chem. Soc. Rev., 2008, 37, 191–214.
3 B. Moulton and M. J. Zaworotko, Chem. Rev., 2001, 101, 1629–1658.
4 M. Eddaoudi, D. B. Moler, H. L. Li, B. L. Chen, T. M. Reineke,
M. O’Keeffe and O. M. Yaghi, Acc. Chem. Res., 2001, 34, 319–330.
5 M. Fujita, Chem. Soc. Rev., 1998, 27, 417–425.
Discussion
[Cu2(BIPA-TC)$solvent]n exhibits supramolecular isomers that can
be controlled by utilizing the appropriate conditions for their
synthesis. The isostructural series NOTT-100 through 108, 110, 111
and PCN-14, 46 were also constructed through ligand-to-ligand
cross-linking of 1,3-bdc moieties and exhibit the same topology as 1
whereas NOTT-109 exhibits ssb topology similar to 2. The NOTT
and PCN nets use benzene, naphthalene, substituted benzene, and
polyyne pillars (ESI†).38–41 Until this study rigidly cross-linked 1,3-
6 S. Kitagawa, R. Kitaura and S. Noro, Angew. Chem., Int. Ed., 2004,
43, 2334–2375.
7 M.-C. Hong and L. Chen, Design and Construction of Coordination
Polymers, John Wiley & Sons, Inc., Hoboken, NJ, 2009.
8 L. R. MacGillivray, Metal–Organic Frameworks: Design and
Application, John Wiley & Sons, Inc., Hoboken, NJ, 2010.
9 S. R. Batten and R. Robson, Angew. Chem., Int. Ed., 1998, 37, 1460–1494.
10 M. Eddaoudi, J. Kim, J. B. Wachter, H. K. Chae, M. O’Keeffe and
O. M. Yaghi, J. Am. Chem. Soc., 2001, 123, 4368–4369.
11 B. Moulton, J. J. Lu, A. Mondal and M. J. Zaworotko, Chem.
Commun., 2001, 863–864.
12 B. Moulton, J. J. Lu, R. Hajndl, S. Hariharan and M. J. Zaworotko,
Angew. Chem., Int. Ed., 2002, 41, 2821–2824.
13 H. Li, M. Eddaoudi, T. L. Groy and O. M. Yaghi, J. Am. Chem. Soc.,
1998, 120, 8571–8572.
14 H. Li, M. Eddaoudi, M. O’Keeffe and O. M. Yaghi, Nature, 1999,
402, 276–279.
15 G. Ferey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour,
S. Surble and I. Margiolaki, Science, 2005, 309, 2040–2042.
16 J. J. Lu, A. Mondal, B. Moulton and M. J. Zaworotko, Angew.
Chem., Int. Ed., 2001, 40, 2113–2116.
ꢀ
bdc ligands had therefore afforded pillared Kagome (nbo) nets with
just one exception, NOTT-109. We herein report the first examples
ꢀ
of ligand-to-ligand pillared square grid and Kagome lattice struc-
tures which exhibit the same composition, i.e. supramolecular
isomers. Very recently, Kitagawa et al. reported that metal-to-
metal pillaring using diamine pillars and [Zn2(carboxylate)4] pad-
dlewheel MBBs can also afford such supramolecular isomers.42
The NOTT series of compounds were evaluated in terms of
porosity towards hydrogen and it was observed that smaller pore
volume and smaller surface area afforded higher Qst at low
loading. PCN-46 was also studied in terms of porosity towards
hydrogen and was found to exhibit a higher Qst at low loading
than NOTT-101, a compound with similar surface area.38,39
17 S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen and
I. D. Williams, Science, 1999, 283, 1148–1150.
18 M. L. Cheney, G. J. McManus, J. A. Perman, Z. Q. Wang and
M. J. Zaworotko, Cryst. Growth Des., 2007, 7, 616–617.
19 K. Tanaka and F. Toda, Chem. Rev., 2000, 100, 1025–1074.
20 F. Toda, in Organic Solid State Reactions, Springer-Verlag Berlin,
Berlin, 2005, vol. 254, pp. 1–40.
21 G. Kaupp, in Organic Solid State Reactions, Springer-Verlag Berlin,
Berlin, 2005, vol. 254, pp. 95–183.
22 A. V. Trask and W. Jones, in Organic Solid State Reactions, Springer-
Verlag Berlin, Berlin, 2005, vol. 254, pp. 41–70.
23 F. Toda, Orgainic Solid-State-Reactions, Kluwer Academic Publisheers,
2002.
24 S. A. Bourne, J. J. Lu, A. Mondal, B. Moulton and M. J. Zaworotko,
Angew. Chem., Int. Ed., 2001, 40, 2111–2113.
25 J. J. Perry, G. J. McManus and M. J. Zaworotko, Chem. Commun.,
2004, 2534–2535.
26 F. Nouar, J. F. Eubank, T. Bousquet, L. Wojtas, M. J. Zaworotko
and M. Eddaoudi, J. Am. Chem. Soc., 2008, 130, 1833–1835.
27 Y. Zou, M. Park, S. Hong and M. S. Lah, Chem. Commun., 2008,
2340–2342.
Conclusions
There is not yet a set of general rules that defines how subtle changes
in reaction conditions afford one supramolecular isomer over another
but herein we demonstrate that it is at least possible to exert control
through reaction conditions. MOMs that are of the same composi-
tion but different in topology are not yet common but they could be
of fundamental value since they will facilitate systematic study of
binding affinity towards important guests such as small gas molecules
(especially hydrogen and carbon dioxide). In particular, they will
allow ‘‘apples with apples’’ comparisons of how pore size and surface
area affect guest binding energies. Preliminary experiments suggest
that 2a and 2b retain porosity following evacuation and in-depth
studies are underway to determine its uptake behavior towards
hydrogen and carbon dioxide. The synthesis of H4BIPA-TC reported
herein requires little or no solvent and affords a product that is ready
to use without cleanup. Such ligands might become attractive if and
when practical applications for MOMs are developed.
28 S. Hong, M. Oh, M. Park, J. W. Yoon, J. S. Chang and M. S. Lah,
Chem. Commun., 2009, 5397–5399.
29 Y. Yan, X. Lin, S. H. Yang, A. J. Blake, A. Dailly, N. R. Champness,
P. Hubberstey and M. Schroder, Chem. Commun., 2009, 1025–1027.
30 D. Zhao, D. Q. Yuan, D. F. Sun and H. C. Zhou, J. Am. Chem. Soc.,
2009, 131, 9186–9188.
Acknowledgements
31 Y. Yan, I. Telepeni, S. H. Yang, X. Lin, W. Kockelmann, A. Dailly,
A. J. Blake, W. Lewis, G. S. Walker, D. R. Allan, S. A. Barnett,
N. R. Champness and M. Schroder, J. Am. Chem. Soc., 2010, 132,
4092–4094.
We gratefully acknowledge the financial support of the DOE-BES
(DE0FG02-07ER4670).
32 X. F. Liu, M. Park, S. Hong, M. Oh, J. W. Yoon, J. S. Chang and
M. S. Lah, Inorg. Chem., 2009, 48, 11507–11509.
Notes and references
33 J. J. Perry, V. C. Kravtsov, G. J. McManus and M. J. Zaworotko, J.
Am. Chem. Soc., 2007, 129, 10076–10077.
34 X. S. Wang, S. Q. Ma, P. M. Forster, D. Q. Yuan, J. Eckert,
J. J. Lopez, B. J. Murphy, J. B. Parise and H. C. Zhou, Angew.
Chem., Int. Ed., 2008, 47, 7263–7266.
‡ Crystal data for 1 at 100(2) K: Cu2C30H10N2O14, M ¼ 749.48,
˚
˚
˚
monoclinic, C2/m; a ¼ 32.461(12) A, b ¼ 18.024(6) A, c ¼ 19.748(7) A,
ꢀ
3
b ¼ 119.964(9) , V ¼ 10 010(6) A , Z ¼ 6, Dcalcd ¼ 0.746 Mg mꢁ3, m ¼
˚
0.672 mmꢁ1, GOF ¼ 0.951, final R1 ¼ 0.0819, wR2 ¼ 0.1424 [for 5453
data I > 2s(I)]. Crystal data for 2a at 100(2) K: Cu2C38H28N4O14
,
3132 | CrystEngComm, 2011, 13, 3130–3133
This journal is ª The Royal Society of Chemistry 2011