Page 5 of 7
Journal of the American Chemical Society
Tf
in Development of siRNA Delivery Vehicles for Cancer Therapy. Adv. Drug
Delivery Rev. 2016, 104, 61.
gene, was used instead of NC⊃siRNA for the above exper-
iment. As shown in Figure 5a, the luciferase activity of
Hep3B-luc cells remained substantially unchanged (light
purple bar, 87%). Hence, the decrease in the luciferase activi-
ty observed in Figure 5a (purple bar) indicates the occur-
1
2
3
4
5
6
7
8
9
(3) Nacev, A.; Kim, S. H.; Rodoriguez-Canales, J.; Tangrea, M. A.;
Shapiro, B.; Emmert-Buck, M. R. A Dynamic Magnetic Shift Method to
Increase Nanoparticle Concentration in Cancer Metastases: A Feasibility
Study Using Simulations on Autopsy Specimens. Int. J. Nanomed. 2011, 6,
2907.
(4) (a) Tuma, P. L.; Hubbard, A. L. Transcytosis: Crossing Cellular Bar-
riers. Physiol. Rev. 2003, 83, 871. (b) Zheng, M.; Tao, W.; Zou, Y.;
Farokhzad, O. C.; Shi, B. Nanotechnology-Based Strategies for siRNA Brain
Delivery for Disease Therapy. Trends Biotechnol. 2018, 36, 562.
Tf
rence of RNAi. Fortunately, NC⊃siRNA did not show any
appreciable cytotoxicity with its concentration up to 200 nM
(
Figure 5b).
In conclusion, we developed a transferrin (Tf)-appended
siRNA nanocaplet ( NC⊃siRNA) capable of delivering
siRNA into deep tissues at depth of up to ~70 µm. As
demonstrated with a cancer spheroid, NC⊃siRNA perme-
ates into deep areas of tissues via transcytosis (Figure 2).
NC⊃siRNA eventually transfers siRNA into cytoplasm and
causes RNAi and gene knockdown (Figure 2). Because brain
endothelial cells are known to express high level of Tf-
receptors, NC⊃siRNA has the potential for overcoming
the blood-brain barrier (BBB). Thus, an in vivo study on
siRNA delivery to brain tissues using NC⊃siRNA is a sub-
ject worthy of further investigation.
(5) (a) Friend, D. S.; Gilula, N. B. Variations in Tight and Gap Junctions
Tf
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
in Mammalian Tissues. J. Cell Biol. 1972, 53, 758. (b) Itallie, C. M. V.; An-
derson, J. M. Claudins and Epithelial Paracellular Transport. Annu. Rev.
Physiol. 2006, 68, 403.
Tf
(6) Law, M.; Jafari, M.; Chen, P. Physicochemical Characterization of
siRNA-Peptide Complexes. Biotechnol. Prog. 2008, 24, 957.
Tf
(7) (a) Akinc, A.; Battaglia, G. Exploiting Endocytosis for Nanomedi-
cines. Cold Spring Harbor Perspect. Biol. 2013, 5, a016980. (b) Lu, W.;
Xiong, C.; Zhang, R.; Shi, L.; Huang, M.; Zhang, G.; Song, S.; Huang, Q.;
Liu, G.; Li, C. Receptor-Mediated Transcytosis: A Mechanism for Active
Extravascular Transport of Nanoparticles in Solid Tumors. J. Controlled
Release 2012, 161, 959.
(8) (a) Sarisozen, C.; Abouzeid, A. H.; Torchilin, V. P. The Effect of Co-
delivery of Paclitaxel and Curcumin by Transferrin-Targeted PEG-PE-
Based Mixed Micelles on Resistant Ovarian Cancer in 3-D Spheroids and in
vivo Tumors. Eur. J. Pharm. Biopharm. 2014, 88, 539. (b) Liu, T.; Kempson,
I.; Jonge, M.; Howard, D. L.; Thierry, B. Quantitative Synchrotron X-ray
Fluorescence Study of the Penetration of Transferrin-Conjugated Gold
Nanoparticles inside Model Tumour Tissues. Nanoscale 2014, 6, 9774.
2
1 Tf
Tf
ASSOCIATED CONTENT
The Supporting Information is available free of charge on the
ACS Publications website.
(9) (a) Wei, L.; Guo, X.; Yang, T.; Yu, M.; Chen, D.; Wang, J. Brain Tu-
Synthesis of Gu, Glue-alkyne, and BP-alkyne; H NMR, 13C
Az
1
mor-Targeted Therapy by Systemic Delivery of siRNA with Transferrin
Receptor-Mediated Core-Shell Nanoparticles. Int. J. Pharm. 2016, 510, 394.
(b) Youn, P.; Chen, Y.; Furgeson, D. Y. A Myristoylated Cell-Penetrating
Peptide Bearing a Transferrin Receptor-Targeting Sequence for Neuro-
Targeted siRNA Delivery. Mol. Pharmaceutics 2014, 11, 486.
NMR, and MALDI-TOF-MS spectral data; and related experi-
mental procedures (PDF)
AUTHOR INFORMATION
(10) (a) Waite, C. L.; Roth, C. M. PAMAM-RGD Conjugates Enhance
Corresponding Authors
okuro@macro.t.u-tokyo.ac.jp; aida@macro.t.u-tokyo.ac.jp
siRNA Delivery Through a Multicellular Spheroid Model of Malignant
Glioma. Bioconjugate Chem. 2009, 20, 1908. (b) Jiang, X.; Xin, H.; Gu, J.;
Xu, X.; Xia, W.; Chen, S.; Xie, Y.; Chen, L.; Chen, Y.; Sha, X.; Fang, X. Solid
Tumor Penetration by Integrin-Mediated Pegylated Poly(trimethylene
carbonate) Nanoparticles Loaded with Paclitaxel. Biomaterials 2013, 34,
Notes
The authors declare no competing financial interest.
1
739. (c) Liu, X.; Lin, P.; Perrett, I.; Lin, J.; Liao, Y.; Chang, C. H.; Jiang, J.;
Wu, N.; Donahue, T.; Wainberg, Z.; Nel, A. E.; Meng, H. Tumor-
Penetrating Peptide Enhances Transcytosis of Silicasome-Based Chemo-
therapy for Pancreatic Cancer. J. Clin. Invest. 2017, 127, 2007.
ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Early-Career Sci-
entists (18K14353 and 18K14270) to K.O. and P.K.H., respec-
tively, and partially supported by Grant-in-Aid for Scientific
Research (S) (18H05260) to T.A. A.K. thanks JSPS for the
world-leading innovative graduate study program for life science
and technology (WINGS-LST). We appreciate Prof. H. Cabral
and Dr. Y. Anraku (the University of Tokyo) for zeta-potential
measurements and fruitful discussions on transcytosis assays
using cancer spheroids.
(11) Mogaki, R.; Hashim, P. K.; Okuro, K.; Aida, T. Guanidinium-Based
‘‘Molecular Glues’’ for Modulation of Biomolecular Functions. Chem. Soc.
Rev. 2017, 46, 6480.
(12) (a) Okuro, K.; Kinbara, K.; Tsumoto, K.; Ishii, N.; Aida, T. Molecu-
lar Glues Carrying Multiple Guanidinium Ion Pendants via an Oligoether
Spacer: Stabilization of Microtubules against Depolymerization. J. Am.
Chem. Soc. 2009, 131, 1626. (b) Okuro, K.; Kinbara, K.; Takeda, K.; Inoue,
Y.; Ishijima, A.; Aida, T. Adhesion Effects of a Guanidinium Ion Appended
Dendritic “Molecular Glue” on the ATP-Driven Sliding Motion of Actomy-
osin. Angew. Chem., Int. Ed. 2010, 49, 3030. (c) Uchida, N.; Okuro, K.;
Niitani, Y.; Ling, X.; Ariga, T.; Tomishige, M.; Aida, T. Photoclickable
Dendritic Molecular Glue: Noncovalent-to-Covalent Photochemical Trans-
formation of Protein Hybrids. J. Am. Chem. Soc. 2013, 135, 4684. (d) Gar-
zoni, M.; Okuro, K.; Ishii, N.; Aida, T.; Pavan, G. M. Structure and Shape
Effects of Molecular Glue on Supramolecular Tubulin Assemblies. ACS
Nano 2014, 8, 904. (e) Mogaki, R.; Okuro, K.; Aida, T. Molecular Glues for
Manipulating Enzymes: Trypsin Inhibition by Benzamidine-Conjugated
Molecular Glues. Chem. Sci. 2015, 6, 2802. (f) Okuro, K.; Sasaki, M.; Aida,
T. Boronic Acid-Appended Molecular Glues for ATP-Responsive Activity
Modulation of Enzymes. J. Am. Chem. Soc. 2016, 138, 5527. (g) Mogaki, R.;
Okuro, K.; Aida, T. Adhesive Photoswitch: Selective Photochemical Modu-
REFERENCES
(1) (a) Hannon, G. J. RNA Interference. Nature 2002, 418, 244. (b)
Bumcrot, D.; Manoharan, M.; Koteliansky, V.; Sah, D. W. Y. RNAi Thera-
peutics: A Potential New Class of Pharmaceutical Drugs. Nat. Chem. Biol.
2
006, 2, 711. (c) Kim, D. H.; Rossi, J. J. Strategies for Silencing Human
Disease using RNA Interference. Nat. Rev. Genet. 2007, 8, 173.
2) (a) Trédan, O.; Galmarini, C. M.; Patel, K.; Tannock I. F. Drug Re-
(
sistance and the Solid Tumor Microenvironment. J. Natl. Cancer Inst. 2007,
99, 1441. (b) Kim, H. J.; Kim, A.; Miyata, K.; Kataoka, K. Recent Progress
ACS Paragon Plus Environment