F
D. von der Heiden et al.
Letter
Synlett
can be activated for a subsequent nucleophilic attack by
halogen-bond donors. Therefore, these findings will turn
out useful in the development of more active (and ideally
chiral) catalysts in the field of halogen bonding.
(9) (a) Breugst, M.; Detmar, E.; von der Heiden, D. ACS Catal. 2016,
6, 3203. (b) von der Heiden, D.; Bozkus, S.; Klussmann, M.;
Breugst, M. J. Org. Chem. 2017, 82, 4037.
(10) The concept of hidden Brønsted acid catalysis was originally
introduced by Hintermann: Dang, T. T.; Boeck, F.; Hintermann,
F. J. Org. Chem. 2011, 76, 9353.
(11) Togo, H.; Iida, S. Synlett 2006, 2159.
Funding Information
(12) C1–OTf was synthesized from 2-iodo-1-octlybenzimidazole
(1.0 equiv) and methyl triflate (1.2 equiv) as described in the
Supporting Information. 1H NMR (CDCl3, 300 MHz): δ = 0.86 (t,
3JHH = 6.3 Hz, 3 H), 1.26–1.43 (m, 10 H), 1.90 (quint, 3JHH = 7.5 Hz,
2 H), 4.16 (s, 3 H), 4.49 (t, 3JHH = 7.6 Hz, 2 H), 7.56–7.63(m, 2 H),
7.70–7.75 (m, 1 H), 7.82–7.87 (m, 1 H). 13C{apt} NMR (CDCl3, 75
MHz): δ = 14.1 (s), 22.6 (s), 26.7 (s), 29.1 (s), 29.2 (s), 29.3 (s),
31.7 (s), 36.9 (s), 50.6 (s), 112.0 (s), 112.7 (s), 13.4 (s), 120.6 (d,
1JCF = 320.4 Hz), 127.3 (s), 127.4 (s), 133.2 (s), 134.2 (s). IR (neat,
ATR): ṽ = 2928 (w), 2857 (w), 1479 (w), 1028 (s), 747 (m), 637
(s) cm–1. ESI-HRMS: m/z [M]+ calcd for C16H24N2I+: 371.0979;
found: 371.0976. Anal. Calcd for C17H24F3IN2O3S: C, 39.24; H,
4.65; N, 5.38. Found: C, 39.31; H, 4.91; N, 5.16.
Financial support from the Fonds der Chemischen Industrie (Liebig
scholarship to M.B. and Ph.D. scholarships to D.v.d.H.) is gratefully ac-
knowledged.
)(
Acknowledgment
We are grateful to the Regional Computing Center of the University of
Cologne for providing computing time of the DFG-funded High Per-
formance Computing (HPC) System CHEOPS as well as for their sup-
port. We thank Prof. Dr. Albrecht Berkessel and his group for support.
C5–OTf was obtained from 2-iodo-3-methyl-1-octylimidaz-
olium bromide (1.0 equiv) by anion metathesis with NaOTf
(1.5 equiv) in CH2Cl2/H2O. 1H NMR (CDCl3, 400 MHz): δ = 0.88
(t, 3JHH = 6.8 Hz, 3 H), 1.23–1.39 (m, 10 H), 1.84 (quint, 3JHH = 7.2
Hz), 3.95 (s, 3 H), 4.17 (t, 3JHH = 7.5 Hz, 2 H), 7.57 (d, 3JHH = 2.0 Hz,
1 H), 7.73 (d, 3JHH = 2.0 Hz, 1 H). 13C{apt} NMR (CDCl3, 125 MHz):
δ = 14.2 (s), 22.7 (s), 26.4 (s), 29.1 (s), 29.1 (s), 31.8 (s), 30.5 (s),
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References and Notes
1
39.9 (s), 53.1 (s), 103.1 (s), 120.8 (q, JCF = 320 Hz), 124.9 (s),
126.7 (s). 19F{1H} NMR (CDCl3, 376 MHz) δ = –78.2 (s), –78.4 (d,
1JF13C = 320 MHz). IR (neat, ATR): ṽ = 3107 (w), 2926 (w), 2857
(w), 1568 (w), 1497 (w), 1456 (w), 1246 (s), 1223 (m), 1153 (s),
1028 (s), 756 (w), 665 (w), 637 (s) cm–1. ESI-LRMS: m/z (%) =
321.0 (100) [C5]+ 320.8 (20) [Na(OTf)2]–, 148.9 (100) [OTf]–. ESI-
HRMS [C5]+: m/z calcd for C12H22N2I+: 321.0822; found:
321.0821.
(1) (a) Halogen Bonding I; Metrangolo, P.; Resnati, G., Eds.; Springer:
Heidelberg, 2015. (b) Halogen Bonding II; Metrangolo, P.;
Resnati, G., Eds.; Springer: Heidelberg, 2015. (c) Cavallo, G.;
Metrangolo, P.; Milani, R.; Pilati, T.; Priimagi, A.; Resnati, G.;
Terraneo, G. Chem. Rev. 2016, 116, 2478.
(2) Bruckmann, A.; Pena, M. A.; Bolm, C. Synlett 2008, 900.
(3) For selected reviews, see: (a) Bulfield, D.; Huber, S. M. Chem. Eur.
J. 2016, 22, 14434. (b) Breugst, M.; von der Heiden, D.;
Schmauck, J. Synthesis 2017, 49, 3224. For selected examples,
see: (c) Walter, S. M.; Kniep, F.; Herdtweck, E.; Huber, S. M.
Angew. Chem. Int. Ed. 2011, 50, 7187. (d) Kniep, F.; Rout, L.;
Walter, S. M.; Bensch, H. K. V.; Jungbauer, S. H.; Herdtweck, E.;
Huber, S. M. Chem. Commun. 2012, 48, 9299. (e) Kniep, F.;
Jungbauer, S. H.; Zhang, Q.; Walter, S. M.; Schindler, S.;
Schnapperelle, I.; Herdtweck, E.; Huber, S. M. Angew. Chem. Int.
Ed. 2013, 52, 7028. (f) Castelli, R.; Schindler, S.; Walter, S. M.;
Kniep, F.; Overkleeft, H. S.; Van der Marel, G. A.; Huber, S. M.;
Codée, J. D. C. Chem. Asian J. 2014, 9, 2095. (g) Jungbauer, S. H.;
Huber, S. M. J. Am. Chem. Soc. 2015, 137, 12110.
(13) Typical Experimental Procedure
A stock solution (1.00 mL) containing the reactants 1 and 2 as
well as the internal standard SiEt4 was added to the pure cata-
lyst in an NMR tube. This resulted in approximate concentration
of 50 mM in the catalyst, 500 mM in the reactants, and 125 mM
1
in the standard. The course of the reaction was followed by H
NMR spectroscopy. If a reasonable amount of product was
observed in the final NMR spectrum, the reaction was deacti-
vated with 100 μL DMSO. Within 2 h, all volatile residues were
removed under reduced pressure, and the product was isolated
by column chromatography (SiO2, cyclohexane/EtOAc = 9:1
(v/v), Rf = 0.11) as an off-white solid.
Analytical Data for Compound 3
(4) (a) Takeda, Y.; Hisakuni, D.; Lin, C.-H.; Minakata, S. Org. Lett.
2015, 17, 318. (b) He, W.; Ge, Y.-C.; Tan, C.-H. Org. Lett. 2014, 16,
3244.
(5) Jungbauer, S. H.; Walter, S. M.; Schindler, S.; Rout, L.; Kniep, F.;
Huber, S. M. Chem. Commun. 2014, 50, 6281.
103–104 °C. 1H NMR (CD2Cl2, 300 MHz): δ = 1.42 (d, 3J = 6.9 Hz),
3.23 (dd, 3J = 8.5 Hz, 2J = 16.5 Hz, 1 H), 3.44 (dd, 3J = 5.4 Hz, 2J =
16.4 Hz, 1 H), 3.73–3.84 (m, 1 H), 6.97 (d, 3J = 2.2 Hz, 1 H), 7.04–
7.16 (m, 2 H), 7.31 (d, 3J = 8.0 Hz, 1 H), 7.41 (t, 3J = 7.5 Hz, 2 H),
7.52 (t, 3J = 7.4 Hz 1 H), 7.63 (d, 3J = 7.8 Hz, 1 H), 7.91–7.93 (m, 2
H), 8.12 (br s, 1 H). 13C{1H} NMR (CD2Cl2, 75.5 MHz): δ = 21.4 (s),
27.5 (s), 46.8 (s), 111.7 (s), 119.5 (s), 119.5 (s), 120.7 (s), 121.7
(s), 122.2 (s), 126.8 (s), 128.4 (s), 128.9 (s), 133.3 (s), 137.0 (s),
137.8 (s), 200.0 (s). IR (neat, ATR): ṽ = 3352 (m), 3057 (w), 2982
(w), 2961 (w), 2872 (w), 1667 (s), 1618 (w), 1593 (w), 1489 (w),
1445 (m), 1339 (m) 1215 (s), 999 (m), 745 (s), 60 (m) cm–1. ESI-
HRMS: m/z [M + H]+ calcd for C18H18NO+: 264.1383; found:
264.1384.
(6) Saito, M.; Kobayashi, Y.; Tsuzuki, S.; Takemoto, Y. Angew. Chem.
Int. Ed. 2017, 56, 7653.
(7) (a) Webb, J. A.; Klijn, J. E.; Hill, P. A.; Bennett, J. L.; Goroff, N. S.
J. Org. Chem. 2004, 69, 660. (b) Goroff, N. S.; Curtis, S. M.; Webb,
J. A.; Fowler, F. W.; Lauher, J. W. Org. Lett. 2005, 7, 1891.
(c) Lieffrig, J.; Jeannin, O.; Fourmigué, M. J. Am. Chem. Soc. 2013,
135, 6200. (d) Dumele, O.; Wu, D.; Trapp, N.; Goroff, N.;
Diederich, F. Org. Lett. 2014, 16, 4722.
(8) Matsuzawa, A.; Takeuchi, S.; Sugita, K. Chem. Asian J. 2016, 11,
2863.
(14) Slightly higher values (up to 10 %) could be detected for CDCl3
and CH2Cl2.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–G