Page 5 of 7
Journal of the American Chemical Society
*
*
Peter J. H. Scott. E-mail: pjhscott@umich.edu.
Melanie S. Sanford. e-mail: mssanfor@umich.edu.
1
2
3
4
5
6
7
8
9
ACKNOWLEDGMENT
5
(
a) Terrier, F. Modern Nucleophilic Aromatic Substitution; Wiley-
This work was supported by the NIH [award number
F32GM136022 (LSS) and award number R01EB021155
(MSS and PJHS)]. We acknowledge Dr. Devin M. Fergu-
son, Isaac M. Blythe, Dr. Yiyang See, Dr. Sean M.
Preshlock, Dr. Jay S. Wright and Pronay Roy for helpful
discussions. We also acknowledge Dr. Rachel S. Plumb
for assistance with data processing.
VCH, Weinheim, 2013, p. 236-268. (b) Cole, E. L.; Stewart, M. N.;
Littich, R.; Hoareau, R.; Scott, P. J. H. Radiosyntheses using Fluorine-
1
8: the Art and Science of Late Stage Fluorination. Curr. Top. Med.
Chem. 2014, 14, 875–900. (c) Jacobson, O.; Kiesewetter, D. O.;
Chen, X. Fluorine-18 Radiochemistry, Labeling Strategies and Syn-
thetic Routes.ꢀBioconjugate Chem. 2015, 26, 1−18.
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
6
In many cases, radiofluorination of simple building blocks followed
by subsequent synthetic steps is required. See: (a) Krüll, J.; Heinrich,
18
M. R. [ F]Fluorine-Labeled Pharmaceuticals: Direct Aromatic Fluori-
nation Compared to Multi-Step Strategies. Asian J. Org. Chem. 2019,
REFERENCES
8
, 576–590. (b) van der Born, D.; Pees, A.; Poot, A. J.; Orru, R. V. A.;
Windhorst, A. D.; Vugts, D. J. Fluorine-18 Labelled Building Blocks for
PET Tracer Synthesis. Chem. Soc. Rev. 2017, 46, 4709-4773.
7
(
a) Jacobson, O.; Chen, X. PET Designated Flouride-18 Production
and Chemistry. Curr. Top. Med. Chem. 2010, 10, 1048–1059. (b) Sun,
H.; DiMagno, S. G Competitive Demethylation and Substitution in
N,N,N-Trimethylanilinium Fluorides.ꢀJ. Fluor. Chem. 2007, 128, 806–
1
Preshlock, S.; Tredwell, M.; Gouverneur, V. 18F-Labeling of Arenes
and Heteroarenes for Applications in Positron Emission Tomography.
Chem. Rev. 2016, 116, 719−766.
8
12. (c) Ermert, J.; Hocke, C.; Ludwig, T.; Gail, R.; Coenen, H. H. Com-
2
a) Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Synthesis of 11C, 18F,
parison of Pathways to the Versatile Synthon of No-Carrier-Added 1-
(
18
15O, and 13N Radiolabels for Positron Emission Tomography. Angew.
Bromo-4-[ F]fluorobenzene. J. Labelled Compd. Radiopharm. 2004,
7, 429−441.
4
Chem. Int. Ed. 2008, 47, 8998–9033. (b) Brooks, A. F.; Topczewski, J.
J.; Ichiishi, N.; Sanford, M. S.; Scott, P. J. H. Late-Stage
8
(
a) Grushin, V. V. The Organometallic Fluorine Chemistry of Palladi-
[18
4
um and Rhodium: Studies toward Aromatic Fluorination. Acc. Chem.
Res. 2010, 43, 160-171. (b) Campbell, M. G.; Ritter, T. Modern Car-
bon−Fluorine Bond Forming Reactions for Aryl Fluoride Synthesis
Chem. Rev. 2015, 115, 612-633.
F]Fluorination: New Solutions to Old Problems. Chem. Sci. 2014, 5,
545-4553. (c) Coenen, H. H.; Ermert, J. 18F-labelling Innovations
and Their Potential for Clinical Application. Clin. Transl. Imaging
018, 6, 169-193. (d) Chen, W.; Huang, Z.; Tay, N. E. S.; Giglio, B.;
2
9
For an example of indirect radiofluorination of aryl bromides via
Wang, M.; Wang, H.; Wu, Z.; Nicewicz, D. A.; Li, Z. Direct Arene C-H
Fluorination with 18F- via Organic Photoredox Catalysis. Science 2019,
II
isolated Ni -aryl intermediates, see: Lee, E.; Hooker, J. M.; Ritter, T.
Nickel-Mediated Oxidative Fluorination for PET with Aqueous [ F]
18
3
64, 1170-1174. (e) Xu, P.; Zhao, D.; Berger, F.; Hamad, A.; Rickmeier,
Fluoride. J. Am. Chem. Soc. 2012, 134, 17456−17458.
J.; Petzold, R.; Kondratiuk, M.; Bohdan, K. J.; Ritter, T. Site-Selective
Late-Stage Aromatic [ F]Fluorination via Aryl Sulfonium Salts. An-
1
0
18
(a) Makaravage, K. J.; Brooks, A. F.; Mossine, A. V.; Sanford, M. S.;
Scott, P. J. H. Copper-Mediated Radiofluorination of Arylstannanes
gew. Chem. Int. Ed. 2020, 59, 1956 –1960.
18
3
with [ F]KF. Org. Lett. 2016, 18, 5440–5443. (b) Gamache, R. F.;
Waldmann, C.; Murphy, J. M. Copper-Mediated Oxidative Fluorina-
tion of Aryl Stannanes with Fluoride. Org. Lett. 2016, 18, 4522−4525.
N
For examples of the S Ar radiofluorination of aryl halides, see: (a)
Lemaire, C.; Guillaume, M.; Christiaens, L.; Palmer, A. J.; Cantineau,
R. A New Route for the Synthesis of [ F]Fluoroaromatic Substituted
Amino Acids: No Carrier Added L-p-[ F]-Fluorophenylalanine. Appl.
Radiat. Isot. 1987, 38, 1033−1038. (b) Pascali, C.; Luthra, S. K.; Pike,
V. W.; Price, G. W.; Ahier, R. G.; Hume, S. P.; Mers, R.; Manjil, L.;
Cremer, J. E. The Radiosynthesis of [ F]PK 14105 as an Alternative
Radioligand for Peripheral Type Benzodiazepine Binding Sites. Appl.
Radiat. Isot. 1990, 41, 477−482. (c) Hashizume, K.; Tamakawa, H.;
Hashimoto, N.; Miyake, Y. Single-step Synthesis of [ F]Haloperidol
from the Chloro-precursor and its Application in PET Imaging of a
Cat’s Brain. Appl. Radiat. Isot. 1997, 48, 1179−1185. (d) Shen, B.;
Loffler, D.; Zeller, K.-P.; Ubele, M.; Reischl, G.; Machulla, H.-J. Decar-
1
8
18
(c) Zarrad, F.; Zlatopolskiy, B. D.; Krapf, P.; Zischler, J.; Neumaier, B. A
Practical Method for the Preparation of 18F-Labeled Aromatic Amino
18
Acids from Nucleophilic [ F]Fluoride and Stannyl Precursors for Elec-
18
trophilic Radiohalogenation. Molecules. 2017, 22, 2231.
1
1
(
a) Mossine, A. V.; Brooks, A. F.; Makaravage, K. J.; Miller, J. M.;
18
Ichiishi, N.; Sanford, M. S.; Scott, P. J. H. Synthesis of [ F]Arenes via
18
1
8
the Copper-Mediated [ F]Fluorination of Boronic Acids. Org. Lett.
015, 17, 5780–5783. (b) Tredwell, M.; Preshlock, S. M.; Taylor, N. J.;
2
Gruber, S.; Huiban, M.; Passchier, J.; Mercier, J.; Génicot, C.; Gouver-
neur, V. A General Copper-Mediated Nucleophilic 18F Fluorination of
18
Arenes Angew. Chem. Int. Ed. 2014, 53, 7751-7755. (c) Zlatopolskiy,
B. D. Zischler, J.; Krapf, P.; Zarrad, F.; Urusova, E. A.; Kordys, E.; Ende-
pols, H.; Neumaier, B. Copper-mediated Aromatic Radiofluorination
Revisited: Efficient Production of PET Tracers on a Preparative Scale.
Chem. Eur. J. 2015, 21, 5972-5979. (d) Preshlock, S.; Calderwood, S.;
Verhoog, S.; Tredwell, M.; Huiban, M.; Hienzsch, A.; Gruber, S.; Wil-
son, T. C.; Taylor, N. J.; Cailly, T.; Schedler, M.; Collier, T. L.; Passchier,
J.; Smits, R.; Mollitor, J.; Hoepping, A.; Mueller, M.; Genicot, C.; Mer-
cier, J.; Gouverneur, V. Enhanced Copper-Mediated 18F-Fluorination
of Aryl Boronic Esters provides Eight Radiotracers for PET Applica-
tions. Chem. Commun. 2016, 52, 8361-8364. (e) Mossine, A. V.;
Brooks, A. F.; Bernard-Gauthier, V.; Bailey, J. J.; Ichiishi, N.; Schirr-
bonylation of Multi-substituted [ F]- Benzaldehydes for Modelling
Synthesis of 18F-Labelled Aromatic Amino Acids. Appl. Radiat. Isot.
2007, 65, 1227−1231.
4
N
For examples of the S Ar radiofluorination of halopyridines, see: (a)
Beer, H.-F.; Haeberli, M.; Ametamey, S.; Schubiger, P. A. Comparison
18
of Two Synthetic Methods to Obtain [ F] N-(2-aminoethyl)-5-
fluoropyridine-2-carboxamide, a Potential Mao-B Imaging Tracer for
PET. J. Labelled Compd. Radiopharm. 1995, 36, 933−945. (b) Kar-
ramkam, M.; Hinnen, F.; Vaufrey, F.; Dolle,
́
F. 2-, 3- and 4-
18
[ F]Fluoropyridine by No-Carrier-Added Nucleophilic Aromatic Sub-
18
stitution with K[ F]F-K222 − A Comparative Study. J. Labelled
Compd. Radiopharm. 2003, 46, 979−992. (c) Malik, N.; Voelter, W.;
Machulla, H.-J.; Solbach, C. Radiofluorination of 2-Fluoropyridines by
macher, R.; Sanford, M. S.; Scott, P. J. H. Automated Synthesis of PET
Radiotracers by Copper-mediated 18F-Fluorination of Organoborons:
Importance of the Order of Addition and Competing Protodeboryla-
tion. J. Label. Compd. Radiopharm. 2018, 61, 228-236. (f) Taylor, N.
18
Isotopic Exchange with [ F]Fluoride. J. Radioanal. Nucl. Chem. 2011,
87, 287−292.
2
ACS Paragon Plus Environment