BHATRA ET AL.
7
[5] L. Tian, Z. Shang, X. Zheng, Y. Sun, Y. Yu, B. Qian, X. Liu, Appl.
Organometal. Chem. 2006, 20, 74.
[6] L. Tian, B. Qian, Y. Sun, X. Zheng, M. Yang, H. Li, X. Liu, Appl.
Organometal. Chem. 2005, 19, 980.
[7] H. L. Singh, M. K. Gupta, A. K. Varshney, Res. Chem. Intermed. 2001, 27,
605.
[8] G. Şirikcia, N. Ancına, S. Gül Öztaşa, G. Yenişehirlib, N. Altuntaş Öztaşc,
Appl. Organometal. Chem. 2014, 28, 537.
[9] R. Luna‐García, B. M. Damián‐Murillo, V. Barba, H. Höpfl, H. I. Beltrán, L.
S. Zamudio‐Rivera, J. Organomet. Chem. 2009, 694, 3965.
FIGURE
1
Proposed structures for the complexes: (A) Ph3SnL1H–
Ph3SnL4H; (B) Me3SnL1H–Me3SnL4H
[10] T. Sedaghat, M. Naseh, H. R. Khavasi, H. Motamedi, Polyhedron 2012,
33, 435.
pentacoordination (Figure 1A) in trimethyltin(IV) complexes
(Me3SnL1H–Me3SnL4H) and triphenyltin(IV) complexes
(Ph3SnL1H–Ph3SnL4H), respectively, which is supported by
[11] M. Hong, H. Yin, X. Zhang, C. Li, C. Yue, S. Cheng, J. Organomet. Chem.
2013, 724, 23.
2
1
the J(1H–119Sn) and J(119Sn–13C) coupling constants and
[12] D. K. Dey, M. K. Saha, M. Gielen, M. Kemmer, M. Biesemans, R. Willem,
V. Gramlich, S. Mitra, J. Organomet. Chem. 1999, 590, 88.
119Sn NMR chemical shift values.
[13] J. M. Rivera, D. Guzman, M. Rodriguez, J. F. Lamere, K. Nakatani, R.
Santillan, P. G. Lacroix, N. Farfan, J. Organomet. Chem. 2006, 691, 1722.
[14] H. I. Beltrán, C. Damian‐Zea, S. H. Ortega, A. N. Camacho, M. T. R. Apan,
J. Inorg. Biochem. 2007, 101, 1070.
4
| CONCLUSIONS
[15] T. A. K. Al‐Allaf, L. J. Rashan, A. Stelzner, D. R. Powell, Appl.
Organometal. Chem. 2003, 17, 891.
In triorganotin(IV) derivatives of chelating ligands, the
denticity of ligands and geometry of complexes are found
to be different in trimethyltin(IV) and triphenyltin(IV) com-
plexes. One explanation for this behaviour may be that in
trimehtyltin(IV) complexes the central tin atom is less elec-
tron deficient due to the presence of electron‐releasing group
as compared to the triphenyltin(IV) derivatives where elec-
tron‐withdrawing phenyl groups are present. We observed
similar behaviour of ligand and different geometries around
the central tin atom for trimethyltin(IV) and triphenyltin(IV)
compounds. In the compounds Me3SnLH, the ligand, which
usually behaves as a bifunctional tridentate moiety,[63] is a
monofunctional monodentate moiety and the geometry
around the central tin atom is tetrahedral. Whereas in
[16] L. Pellerito, L. Nagy, Coord. Chem. Rev. 2002, 224, 111.
[17] M. Nath, R. Yadav, M. Gielen, H. Dalil, D. de Vos, G. Eng, Appl.
Organometal. Chem. 1997, 11, 727.
[18] D. Kovala‐Demertzi, V. Dokorou, Z. Ciunik, N. Kourkoumelis, M. A.
Demertzis, Appl. Organometal. Chem. 2002, 16, 360.
[19] K. Maheshwari, A. Jain, S. Saxena, Main Group Met. Chem. 2014, 37, 25.
[20] V. Vajpayee, Y. P. Singh, D. Nandani, A. Batra, Appl. Organometal. Chem.
2007, 21, 694.
[21] S. Sharma, A. Jain, S. Saxena, Main Group Met. Chem. 2010, 33, 253.
[22] A. Sharma, A. Jain, S. Saxena, Appl. Organometal. Chem. 2015, 29, 499.
[23] H. Baykara, S. Ilhan, A. Levent, M. Salih Seyitoglu, S. Ozdemir, V. Okumus,
A. Oztomsuk, M. Cornejo, Spectrochim. Acta A 2014, 130, 270.
[24] R. Zhang, Q. Wang, Q. Li, C. Maa, Inorg. Chim. Acta 2009, 362, 2762.
[25] T. Sedaghat, M. Monajjemzadeh, H. Motamedi, J. Coord. Chem. 2011, 64,
the compounds Ph3SnLH, the ligand behaves as
monofunctional bidentate moiety and the geometry of the
compounds is trigonal bipyramidal.
We have also observed a structure–activity relationship in
the ligands and the newly synthesized complexes. The pres-
ence of the phenyl group enhances the toxicity of the ligands
and the complexes.
a
3169.
[26] M. S. . Singh, K. Tawade, Synth. React. Inorg. Met.‐Org. Chem. 2001,
31, 157.
[27] S. Shujah, Z. Rehman, N. Muhammad, A. Shah, S. Ali, N. Khalid, A.
Meetsma, J. Organomet. Chem. 2013, 59, 741.
[28] S. Sharma, A. Jain, S. Saxena, Main Group Met. Chem. 2007, 30, 63.
[29] M. K. Gupta, H. L. Singh, S. Varshney, A. K. Varshney, Bioinorg. Chem.
Appl. 2003, 1, 309.
ACKNOWLEDGEMENTS
[30] A. Joshi, S. Verma, A. Jain, S. Saxena, Main Group Met. Chem. 2005,
28, 31.
The authors are grateful to SAIF, Panjab University, Chandi-
garh for recording the C, H and N analyses, and for 1H NMR,
13C NMR, 119Sn NMR and mass spectra.
[31] L. Dawara, R. V. Singh, Appl. Organometal. Chem. 2011, 25, 643.
[32] T. Baul, S. Basu, Appl. Organometal. Chem. 2008, 22, 195.
[33] H. N. Khan, S. Ali, S. Shahzadi, S. K. Sharma, K. Qanungo, Russ. J. Coord.
Chem. 2010, 36, 310.
REFERENCES
[34] R. Singh, N. K. Kaushik, Spectrochim. Acta A 2009, 72A, 691.
[35] M. Nath, P. K. Saini, A. Kumar, J. Organomet. Chem. 2010, 695, 1353.
[36] M. Nath, M. Vats, P. Roy, Eur. J. Med. Chem. 2013, 59, 310.
[1] M. Hong, H. Geng, M. Niu, F. Wang, D. Li, J. Liu, H. Yin, Eur. J. Med.
Chem. 2014, 86, 550.
[2] R. V. Singh, P. Chaudhary, S. Chauhan, M. Swami, Spectrochim. Acta A
2009, 72A, 260.
[37] T. Sedaghat, M. Naseh, H. R. Khavasi, H. Motamedi, Polyhedron 2012, 33,
435.
[3] K. Singh, Y. Kumar, P. Puri, C. Sharma, K. Rai Aneja, Bioinorg. Chem.
Appl. 2011, 2011, 901716.
[38] D. J. Darensbourg, P. Ganguly, D. Billodeaux, Macromolecules 2005, 38,
5406.
[4] T. S. Basu Baul, S. Basu, D. de Vos, A. Linden, Invest. New Drugs 2009, 27,
[39] H. Jing, S. K. Edulji, J. M. Gibbs, C. L. Stern, H. Zhou, S. T. Nguyen, Inorg.
Chem. 2004, 43, 4315.
419.