ORGANIC
LETTERS
2007
Vol. 9, No. 4
559-562
Diverse Synthesis of Novel
Bisterpyridines via Suzuki-Type
Cross-Coupling
Fu She Han,† Masayoshi Higuchi,*,† and Dirk G. Kurth*,†,‡
Functional Modules Group, Organic Nanomaterials Center, National Institute for
Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan and
Max-Planck-Institute of Colloids and Interfaces, Research Campus Golm, D-14424,
Potsdam, Germany
higuchi.masayoshi@nims.go.jp; kurth@mpikg.mpg.de
Received November 16, 2006
ABSTRACT
A new protocol is presented for the synthesis of novel bisterpyridine derivatives using palladium-catalyzed Miyaura- and Suzuki-type cross-
couplings as the key reactions. This protocol is quick, efficient, mild, and broadly applicable for the construction of versatile bisterpyridines
by symmetric and unsymmetric introduction of various substituents in the pyridine rings as well as by tuning the spacers for bridging the two
terpyridine moieties.
Metallo-supramolecular polymers have recently attracted
growing interest within the domain of material and supra-
molecular chemistry,1 molecular biology,2 and nano science.3
In this context, particular attention has been paid to the
ditopic bisterpyridine derivatives because this type of
compound is chemically and thermally stable and forms, as
a tridentate ligands, stable complexes with a large variety
of transition-metal ions, associated with a rich variety of
interesting properties.3a,4 However, versatile preparation of
bisterpyridine-based coordination polymers has been seri-
ously restricted due to the limited availability of suitable
ligands, and studies have focused mainly on ligands such as
1,4-bis(2,2′:6′,2′′-terpyridine-4-yl)benzene. To date, two
strategies are commonly employed to synthesize bister-
pyridine derivatives.4a,5 One is the base-mediated aldol
condensation of a dialdehyde with an acetylpyridine, for the
(4) For a recent comprehensive review, see: (a) Andres, P. R.; Schubert,
U. S. AdV. Mater. 2004, 16, 1043-1068 and references therein. For recent
research articles, see: (b) Carlson, C. N.; Kuehl, C. J.; Da-Re, R. E.;
Veauthier, J. M.; Schelter, E. J.; Milligan, A. E.; Scott, B. L.; Bauer, E. D.;
Thompson, J. D.; Morris, D. E.; John, K. D. J. Am. Chem. Soc. 2006, 128,
7230-7241. (c) Laine´, P. P.; Bedioui, F.; Loiseau, F.; Chiorboli, C.;
Campagna, S. J. Am. Chem. Soc. 2006, 128, 7510-7521. (d) Se´ne´chal-
David, K.; Leonard, J. P.; Plush, S. E.; Gunnlaugsson, T. Org. Lett. 2006,
8, 2727-2730. (e) Coronado, E.; Gala´n-Mascaro´s, J. R.; Marti-Gastaldo,
C.; Palomares, E.; Durrant, J. R.; Vilar, R.; Gra¨tzel, M.; Nazeeruddin, M.
K. J. Am. Chem. Soc. 2005, 127, 12351-12356. (f) Cui, Y.; He, C. Angew.
Chem., Int. Ed. 2004, 43, 4210-4212. (g) Baitalik, S.; Wang, X.; Schmehl,
R. H. J. Am. Chem. Soc. 2004, 126, 16304-16305. (h) Cui, Y.; He, C. J.
Am. Chem. Soc. 2003, 125, 16202-16203.
† National Institute for Materials Science.
‡ Max-Planck-Institute of Colloids and Interfaces.
(1) Constable, E. C. In ComprehensiVe Supramolecular Chemistry; Lehn,
J. M., Ed.; Pergamon, 1996; Vol. 9, pp 213-252.
(2) (a) Song, B.; Wang, G.; Tan, M.; Yuan, J. J. Am. Chem. Soc. 2006,
128, 13442-13450. (b) Hovinen, J.; Hakala, H. Org. Lett. 2001, 3, 2473-
2476.
(3) (a) Kolb, U.; Bu¨scher, K.; Helm, C. A.; Lindner, A.; Thu¨nemann,
A. F.; Menzel, M.; Higuchi, M.; Kurth, D. G. Proc. Natl. Acad. Sci. U.S.A.
2006, 103, 10202 - 10206. (b) Oh, M.; Mirkin, C. A. Nature 2005, 438,
651-654. (c) Kurth, D. G.; Higuchi, M. Soft Matter 2006, 2, 915-927.
10.1021/ol062788h CCC: $37.00
© 2007 American Chemical Society
Published on Web 01/25/2007