2264
A. Kamal et al. / Tetrahedron Letters 47 (2006) 2261–2264
of PEG appears to be not only to activate the tosylazir-
idine by hydrogen bonding but also to favour a-attack
at the tosylaziridine resulting in high regioselectivity.
Fujiwara, Y.; Ihara, H.; Uneyama, K. J. Org. Chem. 1999,
4, 7323–7329.
. (a) Muller, P.; Nury, P. Org. Lett. 1999, 1, 439–442; (b) Li,
Z.; Fernandez, M.; Jacobsen, E. N. Org. Lett. 1999, 1,
6
9
1
611–1613; (c) Lee, W. Y.; Salvador, J. M.; Bodige, K.
In summary, PEG has been found to be a useful, cost-
effective, environmental friendly and efficient alternative
for the regioselective ring opening reactions of tosylazir-
idines with thiols under mild conditions. Further appli-
cations of PEG as a recyclable reaction medium for
various organic transformations are under investigation
in our laboratory.
Org. Lett. 2000, 2, 931–932; (d) Nakagawa, M.; Kawa-
hara, M. Org. Lett. 2000, 2, 953–955.
1
0. (a) Jacques, B.; Josette, C. R.; Roger, V. Synthesis 1992,
88–292; (b) Bellos, K.; Stamm, H. J. Org. Chem. 1995,
2
60, 5661–5666; (c) Wipf, P.; Uto, Y. Tetrahedron Lett.
1999, 40, 5165–5169.
11. (a) Antolini, L.; Bucciarelli, M.; Caselli, E.; Davoli, P.;
Forni, A.; Moretti, I.; Prati, F.; Torre, G. J. Org. Chem.
1
997, 62, 8784–8789; (b) Bae, J. H.; Shin, S. H.; Park, C.
S.; Lee, W. K. Tetrahedron 1999, 55, 10041–10046.
2. (a) Meguro, M.; Yamamoto, Y. Heterocycles 1996, 43,
Acknowledgements
1
2
473–2482; (b) Lucet, D.; Gallo, T. L.; Mioskowski, C.
The authors D.R.S.R. and Rajendar are grateful to
CSIR, New Delhi, for the award of research fellowships.
Angew. Chem., Int. Ed. 1998, 37, 2580–2627; (c) Sekar, G.;
Singh, V. K. J. Org. Chem. 1999, 64, 2537–2539.
1
1
3. Green Chemistry, ACS Symposium Series 626; Anastas, P.
T., Williamson, T. C., Eds.; American Chemical Society:
Washington, DC, 1996, and references cited therein.
4. (a) Welton, T. Chem. Rev. 1999, 99, 2071–2083; (b)
Seddon, K. R. J. Chem. Technol. Biotechnol. 1997, 68,
351–356; (c) Wasserscheid, P.; Keim, W. Angew. Chem.,
Int. Ed. 2000, 39, 3772–3789; (d) Sheldon, R. Chem.
Commun. 2001, 2399–2407.
References and notes
1
. (a) Sweeney, J. B. Chem. Soc. Rev. 2002, 31, 247–258; (b)
Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599–
6
19; (c) Padwa, A.; Murphree, S. S. In Progress in
Heterocyclic Chemistry; Gribble, G. W., Gilchrist, T. L.,
Eds.; Elsevier Science: Oxford, UK, 2000; Vol. 12,
Chapter 4.1, p 57; (d) Padwa, A.; Pearson, W. H.; Lian,
B. N.; Bergmeier, S. C. In Comprehensive Heterocyclic
Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F.,
Eds.; Pergamon: Oxford, UK, 1996; Vol. 1A, p 1; (e)
Padwa, A.; Woolhouse, A. D. In Comprehensive Hetero-
cyclic Chemistry; Lwowski, W., Ed.; Pergamon: Oxford,
UK, 1984; Vol. 7; (f) Zwanenburg, B.; ten Holte, P.
Stereoselective Heterocyclic Synthesis III. In Top. Curr.
Chem., 2001; Vol. 216, pp 93–124.
15. (a) Grieco, P. A. Organic Synthesis in Water; Blackie
Academic and Professional: London, 1998; (b) Li, C.-J.;
Chan, T.-H. Organic Reactions in Aqueous Media; John
Wiley & Sons: New York, 1997; (c) Breslow, R. Acc.
Chem. Res. 1991, 24, 159–164.
16. (a) Vasudevan, V. N.; Rajender, S. V. Green Chem. 2001, 3,
146–148; (b) Haimov, A.; Neumann, R. Chem. Commun.
2002, 876–877; (c) Heiss, L.; Gais, H. J. Tetrahedron Lett.
1995, 36, 3833–3836; (d) Chandrasekar, S.; Narsihmulu,
Ch.; Shameem, S. S.; Reddy, N. R. Chem. Commun. 2003,
1716–1717; (e) Tanemura, K.; Suzuki, T.; Nishida, Y.;
Horaguchi, T. Chem. Lett. 2005, 34, 576–577.
2
3
. Stamm, H. J. Prakt. Chem., Chem. Ztg. 1999, 341, 319–
331.
. (a) Reetz, M. T.; Jaeger, R.; Drewlies, R.; Hubel, M.
Angew. Chem., Int. Ed. Engl. 1991, 30, 103–106; (b)
Hudlicky, T.; Luna, H.; Price, J. D.; Rulin, F. J. Org.
Chem. 1990, 55, 4683–4687; (c) Lautens, M.; Fagnou, K.;
Zunic, V. Org. Lett. 2002, 4, 3465–3468; (d) Gust, R.;
Keilitz, R.; Schmidt, K. J. Med. Chem. 2002, 45, 2325–
17. Dickerson, T. J.; Reed, N. N.; Janda, K. D. Chem. Rev.
2002, 102, 3325–3344.
18. Kamal, A.; Reddy, D. R.; Rajendar Tetrahedron Lett.
2005, 46, 7951–7953.
19. General procedure: To a stirred suspension of an aziridine
(1 mmol) in PEG 400 (2 g), the thiol (1 mmol) was added
and the resulting mixture was stirred at ambient tempera-
ture until complete consumption of the aziridine (moni-
tored by TLC). The reaction mixture was extracted with
dry ether, the solvent was removed under reduced pressure
and the resulting crude product was purified by silica
column chromatography using EtOAc and hexane (2:8) as
an eluent to obtain the pure product in high yield (Table
1). The recovered PEG was reused for a number of cycles
2337; (e) Tanner, D.; He, H. M. Tetrahedron 1992, 48,
6079–6086.
4
. (a) Tanner, D. Angew. Chem., Int. Ed. Engl. 1994, 33, 599–
603; (b) McCoull, W.; Davis, F. A. Synthesis 2000, 1347–
1365.
5
6
7
. Dureault, A.; Tranchepain, I.; Depezay, J. C. J. Org.
Chem. 1989, 54, 5324–5330.
. Hudlicky, T.; Luna, H.; Price, J. D.; Rulin, F. J. Org.
Chem. 1990, 55, 4683–4687.
. (a) Carreaux, F.; Dureault, A.; Depezay, J. C.
Synlett 1992, 527–530; (b) Maligres, P. E.; See, M. m.;
Askin, D.; Reider, P. j. Tetrahedron Lett. 1997, 38, 5253–
with negligible loss of its activity. Spectral data for the
1
compound 2c: H NMR (200 MHz, CDCl
) d: 1.22–1.45
3
(m, 4H), 1.50–1.74 (m, 2H), 1.94–2.05 (m, 1H), 2.23–2.32
(m, 1H), 2.44 (s, 3H), 2.89 (ddd, 1H, J = 4.1, 9.4, 9.8 Hz),
2.98 (ddd, 1H, J = 4.0, 9.2, 9.6 Hz), 5.10 (br s, NH, 1H),
7.25–7.40 (m, 7H), 7.77 (d, 2H, J = 7.8 Hz); EIMS:
5256.
8
. (a) Wu, J.; Hou, X. L.; Dai, L. X. J. Chem. Soc., Perkin
Trans. 1 2001, 1314–1317; (b) Katagiri, T.; Takahashi, M.;
+
Æ
m/z = 361 [M ].