2204
G. Gao et al. / Carbohydrate Research 346 (2011) 2200–2205
pyridine-d5): d 3.38 (1H, dd, J = 3.8, 11.5 Hz, H-3), 5.50 (1H, br s, H-
12), 3.52 (1H, br s, H-18), 3.57 (1H, br s, H-19), 1.25 (1H, s, H-23),
1.18 (1H, s, H-24), 0.88 (1H, s, H-25), 1.13 (1H, s, H-26), 1.62 (1H, s,
H-27), 1.14 (1H, s, H-29), 0.98 (1H, s, H-30); 1H NMR data of the su-
gar part, see Table 1; 13C NMR (125 MHz, pyridine-d5) data, see Ta-
ble 2 and Table 3; ESIMS (positive mode) m/z: 1127 [M+Na]+;
HRESIMS (positive mode) m/z: 1127.5562 ([M+Na]+, C54H88O23Na+;
calcd 1127.5565).
0.25 lm). Column temperature: 100–180 °C, with a rate of 10 °C/
min, then 180–240 °C, with a rate of 3 °C /min, keeping at 240 °C
for 5 min, and the carrier gas was He (1.2 mL/min), split ratio 1/
50, injection temperature: 250 °C. Injection volume: 1
absolute configurations of the monosaccharides were confirmed
to be -rhamnose, -xylose, and -glucose, by comparison of the
retention times of monosaccharide derivatives with those of stan-
dard samples: -rhamnose (9.69 min), -xylose (12.45 min) and
lL. The
L
D
D
L
D
D-
glucose (13.61 min), respectively.
3.3.4. Catunaroside D (4)
Colorless amorphous powder, ½a D20
ꢂ
+68.5 (c 0.15, MeOH); IR
3.5. Antifeedant assay
(KBr) mmax cmꢀ1
:
3408, 2929, 1741, 1645, 1038; 1H NMR
(500 MHz, pyridine-d5): d 3.25 (1H, dd, J = 3.5, 11.5 Hz, H-3), 5.50
(1H, br s, H-12), 3.52 (1H, br s, H-18), 3.58 (1H, br s, H-19), 1.28
(1H, s, H-23), 1.09 (1H, s, H-24), 0.87 (1H, s, H-25), 1.13 (1H, s,
H-26), 1.65 (1H, s, H-27), 1.14 (1H, s, H-29), 0.98 (1H, s, H-30);
1H NMR data of the sugar part, see Table 1. 13C NMR (125 MHz,
pyridine-d5) data, see Table 2 and Table 3. ESIMS (positive mode)
m/z: 1114 [M+Na]+, 1127 [M+K]+; HRESIMS (positive mode) m/z:
1113.5471 ([M+Na]+, C53H86O23Na+; calcd 1113.5463).
A conventionalnon-choice leaf disc method experiment was con-
ducted to evaluate the antifeedant activities.20 Each sample was dis-
solved in water containing 0.05% Tween 80 (Polysorbate 80) to
obtain serial concentrations of 0.1, 1, 10, 100 and 1000 ppm. Water
containing 0.05% Tween 80 was used as a control separately. Leaf
disks (1.5 cm diameter) cut from cabbage leaves with a cork borer,
were dipped for 10 s in the sample and control solutions and dried
in the air for 3 h at room temperature. Four leaf disks were trans-
ferred to Petri dishes (9 cm diameter and 2 cm depth) with a moist
filter paper on the bottom. Five second instar larvae of P. xylostella
were starved for 2 h and then placed alongside the leaf disks at the
center of the Petri dish. Each treatment was replicated six times
and conducted at 25 1 °C temperature, 75 10% RH and a photope-
riod of 14:10 h (L:D). The amount of leaf consumed within 48 h was
recorded. The area of each disk consumed during this period was
determined by placing leaf remains on the graph paper and then
counting the squares within the consumed area. Then the antifee-
dant index (%) was calculated as (C ꢀ T)/C ꢁ 100 where C is the con-
sumed leaf area of negative control disks and T is the consumed leaf
area of treated and positive control disks. Leaf area consumed in
treatment was corrected from the control. The antifeedant concen-
tration of 50% (AFC50) values generated by linear regression was
determined by probit analysis (SPSS V13.0).
3.3.5. Swartziatrioside (5)
Colorless amorphous powder, ½a D20
ꢂ
+35.0 (c 0.15, MeOH); IR
(KBr) mmax cmꢀ1
:
3403, 2929, 1740, 1645, 1038; 1H NMR
(500 MHz, pyridine-d5): d 3.28 (1H, dd, J = 4.0, 11.0 Hz, H-3), 5.47
(1H, br s, H-12), 3.29 (1H, dd, J = 13.0, 4.0 Hz, H-18), 1.28 (1H, s,
H-23), 1.07 (1H, s, H-24), 0.81 (1H, s, H-25), 0.98 (1H, s, H-26),
1.30 (1H, s, H-27), 0.96 (1H, s, H-29), 1.01 (1H, s, H-30); 1H and
13C NMR data of the sugar part, see Table 1 and Table 3; ESIMS (po-
sitive mode) m/z: 935 [M+Na]+, 951 [M+K]+.
3.3.6. Aralia-saponin V (6)
Colorless amorphous powder, ½a D20
ꢀ15.0 (c, 0.2, MeOH); IR
ꢂ
(KBr) mmax cmꢀ1
:
3409, 2924, 1738, 1641, 1038; 1H NMR
(500 MHz, pyridine-d5): d 3.27 (1H, dd, J = 4.0, 11.5 Hz, H-3), 5.42
(1H, br s, H-12), 3.19 (1H, dd, J = 12.5, 3.8 Hz, H-18), 1.25 (1H, s,
H-23), 1.08 (1H, s, H-24), 0.81 (1H, s, H-25), 1.08 (1H, s, H-26),
1.25 (1H, s, H-27), 0.91 (1H, s, H-29), 0.88 (1H, s, H-30), 4.83 (1H,
d, J = 7.5 Hz, H-10); 1H and 13C NMR data of the sugar part, see
Table 1 and Table 3; ESIMS (positive mode) m/z: 1127 [M+Na]+.
Acknowledgments
This study was financially supported by the National Basic Re-
search Program of China (No. 2010CB833801) and the Scientific
Research Special Funds Project of the Ministry of Finance
(KSCX2-YW-Z-1018).
3.3.7. Araliasaponin IV (7)
Colorless amorphous powder, ½a D20
ꢂ
+80.0 (c = 0.5, MeOH); IR
(KBr) mmax cmꢀ1
:
3411, 2928, 1743, 1640, 1032; 1H NMR
Supplementary data
(500 MHz, pyridine-d5): d 3.26(1H, dd, J = 4.0, 11.0 Hz, H-3), 5.42
(1H, br s, H-12), 3.19 (1H, dd, J = 13.0, 4.0 Hz, H-18), 1.27 (1H, s,
H-23), 1.07 (1H, s, H-24), 0.84 (1H, s, H-25), 1.08 (1H, s, H-26),
1.27 (1H, s, H-27), 0.92 (1H, s, H-29), 0.88 (1H, s, H-30); 1H and
13C NMR data of the sugar part, see Table 1 and Table 3; ESIMS
(positive mode) m/z: 1098 [M+Na]+.
Supplementary data associated with this article can be found, in
References
1. Hamerski, L.; Furlan, M.; Silva, D. H. S.; Cavakgeriro, A. J.; Eberlin, M. N.;
Tomazela, D. M.; Bolzani, V. da S. Phytochemistry 2003, 63, 397–400.
2. Atal, C. K.; Lamba, S. S. Indian J. Pharm. 1960, 22, 120–122.
3. Dubois, M. A.; Benze, S.; Wagner, H. Planta Med. 1990, 56, 451–454.
4. Satpute, K. L.; Jadhav, M. M.; Karodi, R. S.; Katare, Y. S.; Patil, M. J.; Rub, R.;
Bafna, A. B. J. Pharmacognosy Phytother. 2009, 1, 36–40.
5. Kirtikar, K. R.; Basu, B. D., 2nd ed. In Indian Medicinal Plants; International Book
Distributors Dehradun: India, 1999; Vol. 2, pp 1760–1764.
6. Sati, S. P.; Chaukiyal, D. C.; Sati, O. P. J. Nat. Prod. 1989, 52, 376–379.
7. Gao, G. C.; Luo, X. M.; Wei, X. Y.; Qi, S. H.; Yin, H.; Xiao, Z. H.; Zhang, S. Helv.
Chim. Acta 2010, 93, 339–344.
8. Gao, G. C.; Qi, S. H.; Zhang, S.; Yin, H.; Xiao, Z. H.; Li, M. Y.; Li, Q. X. Pharmazie
2008, 63, 542–544.
9. Sati, O. P.; Rana, U.; Chaukiyal, D. C.; Madhusudanan, K. P.; Bhakuni, D. S. Planta
Med. 1987, 53, 530–531.
10. Sotheeswaran, S.; Bokel, M.; Kraus, W. Phytochemistry 1989, 28, 1544–1546.
11. Yaguchi, E.; Miyase, T.; Ueno, A. Phytochemistry 1995, 39, 185–189.
12. Abdel-kader, M. S.; Bahler, B. D.; Malone, S.; Werkhoven, M. C.; Wisses, J. H.;
Neddermann, K.; Bursuker, M. I.; Kingston, D. G. J. Nat. Prod. 2000, 63, 1461–
1464.
3.4. Acid Hydrolysis of 1–7 and determination of absolute
configuration of monosaccharides
Compounds 1–7 (5 mg each) were heated at reflux in 5 mL of
4 N HCl for 8 h (kept sealed) in a water bath (100 °C). After cooling,
the reaction mixtures were extracted with EtOAc (5 mL) saturated
with H2O. The aqueous layers were adjusted to pH 6 with NaHCO3.
After being concentrated under reduced pressure, each H2O layer
(monosaccharide portion) was identified by comparison of
the Rf value with that of authentic samples eluting with CHCl3–
MeOH–H2O (8:7:1) and EtOAc–MeOH–AcOH–H2O (13:3:4:3) sol-
vent system, visualized with ethanol–10% H2SO4 spraying and then
heating. The chiral derivatives were prepared by the reported
method.19 The GC–MS analysis was carried on Shimadzu
QP-2010 GC–MS. Column: Rtx-5MS (30 m, 0.25 mm i.d.,