ACCEPTED MANUSCRIPT
Catalysis Communications
5
conversion of 7.
Scheme 4. Palladium-catalysed intramolecular direct arylation of 1-(2-bromophenyl)-5-phenyl-1,2,3-triazole 7.
In summary, we have demonstrated that using as little as 1 mol% of Pd(OAc)2 as the catalyst precursor, 2-, 3-, or 4-
(bromophenyl)-1,2,3-triazoles can be heteroarylated on the phenyl ring, via a C-H bond activation of heteroarenes, to afford
in high yields benzene rings bearing a triazole unit and also an other heteroarene unit. In all cases, no decomposition of the
triazole motif was detected and no poisoning of the palladium catalyst was observed. Moreover, several heteroarenes such as
furans, thiophenes, pyrroles, thiazoles or isoxazoles were tolerated. This phosphine-free catalyst procedure is economically
and environmentally attractive, as 1) there is no need to eliminate phosphine derivatives at the end of the reaction, 2) with
this C-H bond activation procedure, no preparation of an organometallic derivative is required, reducing the number of steps
and therefore the mass of waste products, 3) the major waste of theses couplings is the relatively non-toxic AcOH/KBr in-
stead of metallic salts with more classical metal-catalysed coupling reactions. For these reasons, this methodology is very
promising for the sustainable synthesis of heteroarylated phenyl-1,2,3-triazoles. By contrast, for intramolecular arylation to
prepare triazolophenanthridines, PdCl(C3H5)(dppb) catalyst should be preferred.
3. Experimental
General procedure for the synthesis of 8-26:
The reaction of the triazole-substituted aryl bromide (1 mmol), heteroarene (1.5 mmol) and KOAc (0.196 g, 2 mmol) at 150°C during 16 h
in DMA (4 mL) in the presence of Pd(OAc)2 (2.24 mg, 0.01 mmol) or PdCl(C3H5)(dppb) (6.1 mg, 0.01 mmol) (see table or schemes) under
argon affords the coupling product after evaporation of the solvent and purification on silica gel. For procedures and NMR data, see elec-
tronic supplementary information.
References
[1]
Richards, G. J. Rosenthal Bioorg. Med. Chem. Lett. 21 (2011) 5849-5853.
[2] N. Boechat, V. F. Ferreira, S. B. Ferreira, M. de L. G. Ferreira, F. de C. da Silva, M. M. Bastos, M. dos S. Costa, M. C. S.
X. Sun, J. Qiu, S. A. Strong, L. S. Green, J. W. F. Wasley, J. P. Blonder, D. B. Colagiovanni, S. C. Mutka, A. M. Stout, J. P.
Lourenco, A. C. Pinto, A. U. Krettli, A. C. Aguiar, B. M. Teixeira, N. V. da Silva, P. R. Martins, F. A. Bezerra, A. L. Camilo, G. P. da
Silva, C. C. Costa, J. Med. Chem. 54 (2011) 5988-5999.
[3]
J. Shi, L. Zhou, F. Amblard, D. R. Bobeck, H. Zhang, P. Liu, L. Bondada, T. R. McBrayer, P. M. Tharnish, T. Whitaker, S. J.
Coats, R. F. Schinazi, Bioorg. Med. Chem. Lett. 22 (2012), 3488-3491.
[4]
[5]
K. J. Harkala, L. Eppakayala, T. C. Maringanti, Org. Med. Chem. Lett. 4 (2014) 1-4.
S.-W. Yang, J. Pan, C. Yang, M. Labroli, W. Pan, J. Caldwell, S. Ha, S. Koseoglu, J. C. Xiao, T. Mayhood, P. R. Sheth, C. G.
Garlisi, J. WU, S. H. Lee, H. Wang, C. M. Tan, T. Roemer, J. Su, Bioorg. Med. Chem. Lett. 26 (2016) 4743-4747.
[6]
D. J. Ritson, J. E. Moses, Tetrahedron 68 (2012), 197-203.
[7]
C. Friebe, B. Schulze, H. Goerls, M. Jaeger, U. S. Schubert, Chem. Eur. J. 20 (2014) 2357-2366.
J. R. Donald, R. R. Wood, S. F. Martin, ACS Comb. Sci. 14 (2012) 135-143.
L. Ackermann, R. Vicente, A. Althammer, Org. Lett. 10 (2008) 2299-2302.
N. Nakamura, Y. Tajima, K. Sakai, Heterocycles 17 (1982) 235-245.
[8]
[9]
[10]
[11]
[12]
Y. Akita, A. Ohta, Heterocycles 19 (1982) 329-331.
A. Ohta, Y. Akita, T. Ohkuwa, M. Chiba, R. Fukunaga, A. Miyafuji, T. Nakata, N. Tani, Y. Aoyagi, Heterocycles 31 (1990)
1951-1958.
[13]
[14]
B.-J. Li, S.-D. Yang, Z.-J. Shi, Synlett (2008) 949-957.
F. Bellina, R. Rossi, Tetrahedron 65 (2009) 10269-10310.
[15]
[16]
X. Chen, K.M. Engle, D.H. Wang, J.Q. Yu, Angew. Chem., Int. Ed. Engl., 48 (2009) 5094-5115.
L. Ackermann, R. Vincente, A. R. Kapdi, Angew. Chem. Int. Ed. 48 (2009) 9792-9826.
[17]
J. Wencel-Delord, F. Glorius, Nature Chem. 5 (2013) 369-375.