New olefin metathesis catalysts
Russ. Chem. Bull., Int. Ed., Vol. 66, No. 9, September, 2017 1605
the solid residue was rinsed with tetrahydrofurane and petroꢀ
leum ether.
291 Hz); 123.4, 122.6, 113.7, 84.0—82.9 (m, C(CF3)2); 74.6, 56.3,
54.2, 51.1, 45.8, 29.7, 22.4, 18.9. 19F NMR (C6D6), δ: –70.20.
Found (%): C, 47.87; H, 5.11; N, 3.86. C29H36Cl2F6N2O2Ru.
Calculated (%): C, 47.68; H, 4.97; N, 3.83.
1ꢀtertꢀButylꢀ3ꢀ[4ꢀ(1,1,1,3,3,3ꢀhexafluoroꢀ2ꢀmethoxyproꢀ
panꢀ2ꢀyl)ꢀ2,6ꢀdimethylphenyl]ꢀ4,5ꢀdihydroꢀ1Hꢀimidazolꢀ3ꢀium
chloride (5a). Yield 80%, m.p. 220—222 °C (dec.). 1H NMR
(400 MHz, CDCl3), δ: 9.32 (s, 1 H, NCHN); 7.29 (s, 2 H,
Harom); 4.34 (s, 4 H, 2 CH2); 3.46 (s, 3 H, OMe); 2.44 (s, 6 H,
2 Me); 1.59 (s, 9 H, C—Me3). 13C NMR (101 MHz, CDCl3), δ:
157.5, 136.8, 135.4, 129.5, 128.8, 122.07 (q, CF3, 1JC,F = 289 Hz);
83.5—81.3 (m, C(CF3)2); 58.0, 54.6, 51.2, 46.7, 28.3, 18.8.
19F NMR (CDCl3), δ: –70.57. Found (%): C, 51.22; H, 5.79;
N, 6.22. C19H25ClF6N2O. Calculated (%): C, 51.07; H, 5.64;
N, 6.27.
Dichloro {3ꢀ[4ꢀ(1,1,1,3,3,3ꢀhexafluoroꢀ2ꢀmethoxypropanꢀ
2ꢀyl)ꢀ2,6ꢀdimethylphenyl]ꢀ1ꢀisopropylꢀ4,5ꢀdihydroꢀ1Hꢀimidꢀ
azolꢀ2ꢀylidene}(2ꢀisopropoxybenzylidene)ruthenium(II) (6b).
Yield 39%. 1H NMR (400 MHz, C6D6), δ: 16.46 (s, 1 H, C=H);
7.59 (s, 2 H, Harom); 7.23—7.15 (m, 2 H, Harom); 6.79 (t, 1 H,
Harom, J = 7.4 Hz); 6.49 (d, 1 H, Harom, J = 8.2 Hz); 5.84 (hept,
1 H, NCHMe2, J = 5.8 Hz); 4.72 (hept, 1 H, OCHMe2,
J = 5.8 Hz); 3.29 (s, 3 H, OMe); 3.16—3.04 (m, 4 H, CH2);
2.25 (s, 6 H, 2 Me); 1.78 (d, 6 H, NCHMe2, J = 5.9 Hz); 1.56
(d, 6 H, OCHMe2, J = 6.3 Hz). 13C NMR (101 MHz, C6D6),
δ: 285.8, 208.1, 152.9, 144.8, 143.1, 140.3, 129.2, 128.8, 128.5,
123.3 (q, CF3, 1JC,F = 290 Hz); 122.6, 122.2, 113.3, 83.5 (hept,
3ꢀ[4ꢀ(1,1,1,3,3,3ꢀHexafluoroꢀ2ꢀmethoxypropanꢀ2ꢀyl)ꢀ2,6ꢀ
dimethylphenyl]ꢀ1ꢀisopropylꢀ4,5ꢀdihydroꢀ1Hꢀimidazolꢀ3ꢀium
1
dichloride (5b). Yield 99%, m.p. 210—215 °C (dec.). H NMR
2
(400 MHz, DMSOꢀd6), δ: 9.00 (s, 1 H, NCHN); 7.43 (s, 2H,
Harom); 4.28—4.15 (m, 4 H, 2 CH2); 4.01 (hept, 1 H, CHMe2,
J = 6.5 Hz); 3.47 (s, 3 H, OMe); 2.41 (s, 6 H, 2 Me), 1.34
(d, 6 H, CHMe2, J = 6.6 Hz). 13C NMR (101 MHz, DMSOꢀd6),
δ: 157.4, 137.6, 136.3, 128.1, 127.8, 122.1 (q, CF3, 1JC,F = 292 Hz);
C(CF3)2, JC,F = 29 Hz); 75.1, 54.2, 52.9, 50.8, 41.8, 22.0,
20.7, 18.7. 19F NMR (C6D6), δ:–70.22. Found (%): C, 46.87;
H, 4.89; N, 3.99. C28H34Cl2F6N2O2Ru. Calculated (%): C, 46.93;
H, 4.78; N, 3.91.
Dichloro {1ꢀcyclohexylꢀ3ꢀ[4ꢀ(1,1,1,3,3,3ꢀhexafluoroꢀ2ꢀ
methoxypropanꢀ2ꢀyl)ꢀ2,6ꢀdimethylphenyl]ꢀ4,5ꢀdihydroꢀ1Hꢀ
imidazolꢀ2ꢀylidene}(2ꢀisopropoxybenzylidene)ruthenium(II) (6с).
Yield 24%. 1H NMR (400 MHz, C6D6), δ: 16.41 (s, 1 H, C=H);
7.52 (s, 2 H, Harom); 7.20—7.07 (m, 2 H, Harom), 6.72 (t, 1 H,
Harom, J = 7.2 Hz); 6.43 (d, 1 H, Harom, JH,H = 8.1 Hz);
5.35—5.23 (m, 1 H, Hcyclohexyl); 4.65 (hept, 1 H, CHMe2,
3JH,H = 5.6 Hz); 3.21 (s, 3 H, OMe); 3.12 (s, 4 H, CH2);
2.78—2.67 (m, 2 H, Hcyclohexyl); 2.19 (s, 6 H, 2 Me); 1.93—1.64
(m, 5 H, Hcyclohexyl); 1.74 (d, 6 H, CHMe2, J = 5.5 Hz);
1.42—1.00 (m, 3 H, Hcyclohexyl). 13C NMR (101 MHz, C6D6),
δ: 286.0, 208.4, 152.9, 144.9, 143.0, 140.4, 129.1, 128.8, 128.5,
2
82.2 (hept, C(CF3)2, JC,F = 28 Hz); 54.6, 50.3, 49.9, 46.5,
20.4, 17.8. 19F NMR (DMSOꢀd6,), δ: –70.07. Found (%):
C, 50.13; H, 5.45; N, 6.45. C18H23ClF6N2O. Calculated (%):
C, 49.95; H, 5.36; N, 6.47.
3ꢀ[4ꢀ(1,1,1,3,3,3ꢀHexafluoroꢀ2ꢀmethoxypropanꢀ2ꢀyl)ꢀ2,6ꢀ
dimethylphenyl]ꢀ1ꢀcyclohexylꢀ4,5ꢀdihydroꢀ1Hꢀimidazolꢀ3ꢀium
chloride (5c). Yield 99%, m.p. 224—226 °C (dec.). 1H NMR
(400 MHz, DMSOꢀd6), δ: 9.09 (s, 1 H, NCHN); 7.42 (s, 2 H,
Harom); 4.24 (s, 4 H, 2 CH2); 3.71—3.61 (m, 1 H, Hcyclohexyl);
3.47 (s, 3 H, OMe); 2.41 (s, 6 H, 2 Me); 1.57 (m, 10 H, Hcyclohexyl).
13C NMR (101 MHz, DMSOꢀd6), δ: 157.4, 137.6, 136.3, 128.1,
1
1
127.7, 122.1 (q, CF3, JC,F = 290 Hz); 82.2 (hept, C(CF3)2,
123.4 (q, CF3, JC,F = 291 Hz); 122.6, 122.2, 113.3, 83.20
2JC,F = 28 Hz); 57.0, 54.6, 49.8, 47.0, 30.4, 24.6, 24.3, 17.8.
19F NMR (DMSOꢀd6,), δ: –70.10. Found (%): C, 53.13;
H, 5.84; N, 5.65. C21H27ClF6N2O. Calculated (%): C, 53.34;
H, 5.75; N, 5.92.
(hept, C(CF3)2, JC,F = 28 Hz); 74.9, 61.2, 54.2, 50.9, 43.3,
2
31.2, 26.3, 25.9, 22.1, 18.7. 19F NMR (C6D6), δ: –70.18.
Found (%): C, 48.95; H, 4.98; N, 3.83. C31H38Cl2F6N2O2Ru.
Calculated (%): C, 49.21; H, 5.06; N, 3.70.
Synthesis of ruthenium complexes 6 (general procedure). In
a flame dried Schlenk vial imidazolinium salt 5 (0.40 mmol)
was dispersed in anhydrous toluene ( 9 mL). The resulting mixꢀ
ture was cooled to 0 °C and degassed thrice, then KHMDS
(420 μL of 1 M solution in THF, 0.42 mmol) was added under
argon. The reaction mixture was stirred for 10 min at room
temperature and complex HꢀI (0.20 g, 0.33 mmol) was added,
the reaction mixture was stirred at 40 °C for 40 min. During this
time the mixture turned from brown to the darkꢀblue. After
completion of the reaction solvents were evaporated under reꢀ
duced pressure and green crystalline product was isolated using
column chromatography (eluting with petroleum ether—ethyl
acetate, 3 : 1).
The work was financially supported by the Russian
Science Foundation (Project No. 16ꢀ13ꢀ10364).
References
1. I. C. Stewart, T. Ung, A. A. Pletnev, J. M. Berlin, R. H.
Grubbs, Y. Schrodi, Org. Lett., 2007, 9, 1589.
2. C. Samojo owicz, M. Bieniek, K. Grela, Chem. Rev., 2009,
109, 3708.
3. G. C. Vougioukalakis, R. H. Grubbs, Chem. Rev., 2010,
110, 1746.
{1ꢀtertꢀButylꢀ3ꢀ[4ꢀ(1,1,1,3,3,3ꢀhexafluoroꢀ2ꢀmethoxyproꢀ
panꢀ2ꢀyl)ꢀ2,6ꢀdimethylphenyl]ꢀ4,5ꢀdihydroꢀ1Hꢀimidazolꢀ2ꢀylꢀ
idene}(dichloro)(2ꢀisopropoxybenzylidene)ruthenium(II) (6a).
Yield 70%. 1H NMR (400 MHz, C6D6), δ: 17.10 (s, 1 H, C=H);
7.54 (s, 2 H, Harom); 7.18 (t, 1 H, Harom, J = 8.0 Hz); 7.13 (d, 1 H,
Harom, J = 7.7 Hz); 6.73 (t, 1 H, Harom, J = 7.3 Hz); 6.45 (d, 1 H,
Harom, J = 8.1 Hz); 4.58 (hept, 1 H, CHMe2, 3JH,H = 5.9 Hz);
3.21 (s, 3 H, OMe); 3.15—3.01 (m, 4 H, 2 CH2); 2.29 (s, 6 H,
2 Me), 2.08 (s, 9 H, C—Me3); 1.53 (d, 6 H, CH(CH3)2,
J = 6.0 Hz). 13C NMR (101 MHz, C6D6), δ: 306.0, 209.1,
4. M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius,
Nature, 2014, 510, 485.
5. S. J. Connon, S. Blechert, Recent Advances in Alkene Metaꢀ
thesis, in Ruthenium Catalysts and Fine Chemistry, Eds
C. Bruneau, P. H. Dixneuf, Springer, Heidelberg, 2004, 93.
6. A. H. Hoveyda, A. R. Zhugralin, Nature, 2007, 450, 243.
7. P. H. Deshmukh, S. Blechert, Dalton Trans., 2007, 2479.
8. K. Grela, Olefin Metathesis Theory and Practice, J. Wiley &
Sons: Hoboken, New Jersey, 2014.
9. J. Tornatzky, A. Kannenberg, S. Blechert, Dalton Trans.,
2012, 41, 8215.
153.0, 146.2, 144.5, 140.1, 130.5, 128.9, 123.4 (q, CF3, 1JC,F
=