C O M M U N I C A T I O N S
3
tylmethyl palladium species (B). Insertion of a new monomer into
the Pd-primary alkyl bond leads to further polymer growth.
Formation of a trans five-membered ring in the polymer is explained
by assuming preferential coordination of the monomer to Pd at the
less-hindered side followed by smooth insertion and chain walking.
Scheme 1. Proposed Mechanism for the Polymerization of I-1
Figure 2. Polarizing optical micrograph of poly(I-4) (run 4 in Table 1).
In summary, the polymerization of 4-alkylcyclopentenes cata-
lyzed by Pd complexes affords polymers with trans-1,3-disubsti-
tuted cyclopentane rings located at regulated intervals along the
2
linear polymer chain. The C -symmetric catalyst produced polymers
Scheme 2 depicts a possible coordination mode of the monomer
to the Pd center of 1b activated by NaBARF. Steric repulsion
between the bulky naphthyl substituent and the monomer renders
coordination in C more favorable than that in D. Repetitive
coordination in C and insertion of the coordinated monomer would
result in formation of the isotactic polymer.
with an isotactic structure that exhibit high crystallinity at low
temperature and liquid-crystalline properties upon heating.
Acknowledgment. The authors are grateful to the Institute for
Molecular Science for the NMR measurements. This work was
supported by a Grant-in-Aid for Scientific Research on Priority
Areas (18750094) from the Ministry of Education, Science, Sports,
and Culture, Japan. T.O. acknowledges a JSPS Research Fellowship
for a Young Scientist.
Scheme 2. Selective Coordination of I-1
Supporting Information Available: Experimental procedures and
NMR spectra, DSC profiles, polarized optical micrographs, and XRD
data of polymers. This material is available free of charge via the
Internet at http://pubs.acs.org.
References
(
1) (a) Janiak, C.; Lassahn, P. G. Macromol. Rapid Commun. 2001, 22, 479.
(
b) Natori, I.; Imaizumi, K.; Yamagishi, H.; Kazunori, M. J. Polym. Sci.,
Polymerization of 4-alkylcyclopentenes with longer alkyl groups
I-3, I-4, and I-10) catalyzed by 1b/NaBARF afforded the corre-
Part B: Polym. Phys. 1998, 36, 1657. (c) Resconi, L.; Waymouth, R. M.
J. Am. Chem. Soc. 1990, 112, 4953. (d) Ballesteros, O. R.; Venditto, V.;
Auriemma, F.; Guerra, G.; Resconi, L.; Waymouth, R. M.; Mogstad, A.
Macromolecules 1995, 28, 2383.
(
sponding polymers poly(I-3), poly(I-4), and poly(I-10) (eq 1 and
13
1
runs 3-5 in Table 1). On the basis of the C{ H} NMR results
Figure 1(iii)-(v)], the polymers contain trans-fused 1,3-cyclo-
(2) (a) Coates, G. W.; Waymouth, R. M. J. Am. Chem. Soc. 1993, 115, 91. (b)
Lavoie, A. R.; Ho, M. H.; Waymouth, R. M. Chem. Commun. 2003, 864.
[
(
3) (a) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1995,
117, 6414. (b) Johnson, L. K.; Mecking, S.; Brookhart, M. J. Am. Chem.
Soc. 1996, 118, 267. (c) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem.
ReV. 2000, 100, 1169. (d) Leatherman, M. D.; Brookhart, M. Macromol-
ecules 2001, 34, 2748. (e) McCord, E. F.; McLain, S. J.; Nelson, L. T. J.;
Ittel, S. D.; Tempel, D.; Killian, C. M.; Johnson, L. K.; Brookhart, M.
Macromolecules 2007, 40, 410.
pentane rings located at regulated intervals along the linear chain.
The long spacers between the five-membered rings did not allow
estimation of the tacticity of these polymers by NMR analysis. The
polymerization of the monomers with more bulky substituents than
2
I-1 using the C -symmetric catalyst 1b probably yields poly(I-3),
(4) (a) Pappalardo, D.; Mazzeo, M.; Antinucci, S.; Pellecchia, C. Macromol-
ecules 2000, 33, 9483. (b) Cherian, A. E.; Lobkovsky, E. B.; Coates, G. W.
Chem. Commun. 2003, 2566. (c) Cherian, A. E.; Rose, J. M.; Lobkovsky,
E. B.; Coates, G. W. J. Am. Chem. Soc. 2005, 127, 13770. (d) Park, S.;
Takeuchi, D.; Osakada, K. J. Am. Chem. Soc. 2006, 128, 3510. (e) Rose,
J. M.; Deplace, F.; Lynd, N. A.; Wang, Z.; Hotta, A.; Lobkovsky, E. B.;
Kramer, E. J.; Coates, G. W. Macromolecules 2008, 41, 9548. A
poly(I-4), and poly(I-10) with the regulated tacticity.
Differential scanning calorimetry (DSC) measurements on iso-
tactic poly(I-1) and poly(I-3) showed monotropic transitions, while
poly(I-4) and poly(I-10) with longer alkylene spacers undergo
enantiotropic transitions. Increasing the length of the alkyl spacer
2
C -symmetric Ni-diimine complex has been reported to promote polym-
erization of R-olefins with high levels of ω,2-regiochemistry. See: (f) Rose,
J. M.; Cherian, A. E.; Coates, G. W. J. Am. Chem. Soc. 2006, 128, 4186.
5) Okada, T.; Park, S.; Takeuchi, D.; Osakada, K. Angew. Chem., Int. Ed.
10
leads to lower phase-transition temperatures. These polymers are
considered to show liquid-crystalline properties between the transi-
tion temperatures. Direct observation of poly(I-4) by polarizing
optical microscopy also supports the existence of the liquid-
crystalline phase (Figure 2). Poly(I-1) obtained using 1a/NaBARF
(
(
2
007, 46, 6141.
6) For 1,3-polymerization of cyclopentene, see: McLain, S.; Feldman, J.;
McCord, E. F.; Gardner, K. H.; Teasley, M. F.; Coughlin, E. B.; Sweetman,
K. J.; Johnson, L. K.; Brookhart, M. Macromolecules 1998, 31, 6705.
7) Polymerization of 4-methylcyclopentene was reported to show high
stereoselectivity. See: McLain, S. J.; McCord, E. F.; Bennett, A. M. A.;
Ittel, S. D.; Sweetman, K. J.; Teasley, M. F. U.S. Patent 6,258,908, 1999;
WO 9950320, 1999; Chem. Abstr. 1999, 131, 272335w.
(
(
n
M ) 10100 and 4500), however, undergoes only an irreversible
glass transition and does not show liquid-crystalline behavior.
8
Recently, Naga et al. reported the formation of liquid-crystalline
(8) For the report of liquid-crystal polyolefins, see: Naga, N.; Yabe, T.;
Sawaguchi, A.; Sone, M.; Noguchi, K.; Murase, S. Macromolecules 2008,
hydrocarbon polymers having five-membered rings from the
cyclopolymerization of 1,5-hexadiene, although the stereochemical
structure of the polymer has not been clarified and is probably not
regulated.
4
1, 7448.
1
3
1
(9) Determined from the C{ H} NMR spectrum at 230 MHz.
(
10) The Supporting Information contains complete diffraction and DSC data.
JA904150W
J. AM. CHEM. SOC. 9 VOL. 131, NO. 31, 2009 10853