10.1002/cphc.201900342
ChemPhysChem
FULL PAPER
reaction mixture was purified by silica gel column chromatography using
CH2Cl2 as eluent and GPC using toluene as eluent to give 6 as a green
solid (34 mg, 0.021 mmol, 35%). 1H NMR (CDCl3, 400 MHz): d = 9.66 (d,
J = 4.8 Hz, 2H), 9.18 (d, J = 4.4 Hz, 2H), 8.90 (d, J = 4.4 Hz, 2H), 8.68 (d,
J = 4.4 Hz, 2H), 8.02 (s, 1H), 7.83 (s, 1H), 7.66 (t, J = 8.4 Hz, 2H), 7.20
(d, J = 8.8 Hz, 4H), 6.95 (t, J = 9.2 Hz, 8H), 3.84 (t, J = 6.4 Hz, 8H), 2.46
(t, J = 7.8 Hz, 4H), 2.40 (s, 3H), 2.38 (s, 3H), 1.55–1.51 (m, 4H), 1.31–
1.26 (m, 12H), 1.02–0.96 (m, 8H), 0.85–0.78 (m, 14H) and 0.65–0.45 (m,
44H) ppm. 13C NMR (CDCl3, 100 MHz): d = 168.5, 159.9, 152.4, 152.0,
151.7, 151.5, 150.8, 150.6, 141.9, 141.0, 134.9, 133.3, 133.0, 132.2,
131.0, 130.2, 130.1, 128.9, 124.6, 122.2, 120.5, 117.5, 115.4, 105.2,
102.8, 95.1, 88.6, 68.7, 35.4, 31.9, 31.7, 31.5, 29.3, 28.9, 28.7, 28.6,
25.3, 22.8, 22.4, 20.9, 20.8, 14.2 and 13.9 ppm. MALDI-MS: m/z calcd
for C101H124N6O8SZn: [M]•+ 1644.8487; found 1644.8504. FT-IR (ATR): n
= 3864, 3676, 3630, 3556, 2949, 2922, 2853, 2344, 2179, 2162, 1988,
1777, 1587, 1504, 1449, 1367, 1338, 1297, 1243, 1199, 1094, 996, 933,
910, 793 and 712 cm–1. m.p.: 63 °C.
[1]
a) M. Grätzel, Acc. Chem. Res. 2009, 42, 1788–1798; b) A. Hagfeldt, G.
Boschloo, L. Sun, L. Kloo, H. Pettersson, Chem. Rev. 2010, 110, 6595–
6663; c) H. S. Jung, J.-K. Lee, J. Phys. Chem. Lett. 2013, 4, 1682–
1693.
[2]
[3]
a) M. S. Prévot, K. Sivula, J. Phys. Chem. C 2013, 117, 17879–17893;
b) J. R. Swierk, T. E. Mallouk, Chem. Soc. Rev. 2013, 42, 2357–2387;
c) Z. Yu, F. Li, L. Sun, Energy Environ. Sci. 2015, 8, 760–775.
a) B. O’Regan, M. Grätzel, Nature 1991, 353, 737–740; b) M. K.
Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P.
Liska, S. Ito, T. Bessho, M. Grätzel, J. Am. Chem. Soc. 2005, 127,
16835–16847; c) F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing,
R. Humphry-Baker, P. Wang, S. M. Zakeeruddin, M. Grätzel, J. Am.
Chem. Soc. 2008, 130, 10720–10728; d) A. Abbotto, N. Manfredi,
Dalton Trans. 2011, 40, 12421–12438; e) T. Kinoshita, J. T. Dy, S.
Uchida, T. Kubo, H. Segawa, Nat. Photonics 2013, 7, 535–539, f) Z.
She, Y. Cheng, L. Zhang, X. Li, D. Wu, Q. Guo, J. Lan, R. Wang, J.
You, ACS Appl. Mater. Interfaces 2015, 7, 27831–27837.
[4]
a) A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem. Int. Ed. 2009,
48, 2474–2499; Angew. Chem. 2009, 121, 2510–2536; b) Y. Ooyama,
Y. Harima, European J. Org. Chem. 2009, 2009, 2903–2934; c) Y. Wu,
W.-H. Zhu, S. M. Zakeeruddin, M. Grätzel, ACS Appl. Mater. Interfaces
2015, 7, 9307–9318; d) K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.
Fujisawa, M. Hanaya, Chem. Commun. 2015, 51, 15894–15897; e) J.
Wang, K. Liu, L. Ma, X. Zhan, Chem. Rev. 2016, 116, 14675–14725; f)
H. Klfout, A. Stewart, M. Elkhalifa, H. He, ACS Appl. Mater. Interfaces
2017, 9, 39873–39889; g) P. Brogdon, H. Cheema, J. H. Delcamp,
ChemSusChem 2018, 11, 86–103; h) Y. Ren, D. Sun, Y. Cao, H. N.
Tsao, Y. Yuan, S. M. Zakeeruddin, P. Wang, M. Grätzel, J. Am. Chem.
Soc. 2018, 140, 2405–2408.
ZnPTC: An aqueous solution of NaOH (20% w/w, 1.9 mL, 12 mmol) was
added to a mixture of dry THF (2.0 mL) and MeOH (1.0 mL) containing
porphyrin 6 (33 mg, 0.020 mmol). The solution was heated at 40 °C for 1
h. TLC (silica, CH2Cl2) showed complete hydrolysis of the ester. A
saturated NH4Cl aqueous solution was added to the reaction mixture and
the mixture was diluted with CH2Cl2, washed with brine, dried over
anhydrous Na2SO4. After the solvent was removed to give ZnPTC as a
green solid (31 mg, 0.020 mmol, quant.). 1H NMR (CDCl3/pyridine-d5,
400 MHz): d = 9.57 (d, J = 4.4 Hz, 2H), 9.00 (d, J = 4.4 Hz, 2H), 8.78 (d,
J = 4.8 Hz, H), 8.57 (d, J = 4.4 Hz, 2H), 7.66 (s, 1H), 7.63 (t, J = 8.2 Hz,
2H), 7.39 (s, 1H), 7.00 (d, J = 8.0 Hz, 4H), 6.94 (d, J = 8.0 Hz, 4H), 6.80
(d, J = 8.4 Hz, 4H), 3.81 (t, J = 6.6 Hz, 8H), 2.40 (t, J = 7.6 Hz, 4H), 1.49–
1.46 (m, 4H) and 0.93–0.42 (m, 78H) ppm. 13C NMR (CDCl3/pyridine-d5,
100 MHz): d = 160.0, 152.3, 151.5, 150.6, 150.4, 149.5, 149.1, 148.9,
135.8, 135.6, 135.4, 134.3, 132.2, 131.7, 130.5, 130.0, 129.7, 128.6,
123.5, 123.2, 123.0, 121.7, 121.4, 114.4, 107.8, 105.2, 105.1, 95.1, 88.7,
77.5, 77.4, 77.2, 76.8, 76.5, 68.6, 35.3, 31.8, 31.6, 31.1, 29.8, 29.3, 28.8,
28.72, 28.66, 25.2, 22.7, 22.4, 14.2 and 14.0 ppm. MALDI-MS: m/z calcd
for C97H120N6O6SZn: [M]•+ 1560.8276; found 1560.8247. FT-IR (ATR): n =
3899, 3805, 3751, 3725, 3687, 3462, 2924, 2851, 2234, 2173, 2146,
2028, 1964, 1588, 1504, 1451, 1243, 1093, 995, 792 and 711 cm–1. m.p.:
96–97 °C.
[5]
a) H. Imahori, T. Umeyama, S. Ito, Acc. Chem. Res. 2009, 42, 1809–
1818; b) L.-L. Li, E. W.-G. Diau, Chem. Soc. Rev. 2013, 42, 291–304;
c) M. Urbani, M. Grätzel, M. K. Nazeeruddin, T. Torres, Chem. Rev.
2014, 114, 12330–12396; d) T. Higashino, H. Imahori, Dalton Trans.
2015, 44, 448–463; e) H. Song, Q. Liu, Y. Xie, Chem. Commun. 2018,
54, 1811–1824; f) J.-M. Ji, H. Zhou, H. K. Kim, J. Mater. Chem. A 2018,
6, 14518–14545.
[6]
a) T. Bessho, S. M. Zakeeruddin, C.-Y. Yeh, E. W.-G. Diau, M. Grätzel,
Angew. Chem. Int. Ed. 2010, 49, 6646–664; Angew. Chem. 2010, 122,
6796–6799; b) A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran,
M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, M.
Grätzel, Science 2011, 334, 629–634; c) K. Kurotobi, Y. Toude, K.
Kawamoto, Y. Fujimori, S. Ito, P. Chabera, V. Sundström, H. Imahori,
Chem. Eur. J. 2013, 19, 17075–17081; d) A. Yella, C.-L. Mai, S. M.
Zakeeruddin, S.-N. Chang, C.-H. Hsieh, C.-Y. Yeh, M. Grätzel, Angew.
Chem. Int. Ed. 2014, 53, 2973–2977; Angew. Chem. 2014, 126, 3017–
3021; e) S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E.
Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, M. K.
Nazeeruddin, M. Grätzel, Nat. Chem. 2014, 6, 242–247; f) Y. Xie, Y.
Tang, W. Wu, Y. Wang, J. Liu, X. Li, H. Tian, W.-H. Zhu, J. Am. Chem.
Soc. 2015, 137, 14055–14058; g) S. H. Kang, M. J. Jeong, Y. K. Eom, I.
T. Choi, S. M. Kwon, Y. Yoo, J. Kim, J. Kwon, J. H. Park, H. K. Kim,
Adv. Energy Mater. 2017, 7, 1602117; h) Y. Lu, H. Song, X. Li, H.
Ågren, Q. Liu, J. Zhang, X. Zhang, Y. Xie, ACS Appl. Mater. Interfaces
2019, 11, 5046–5054.
Photovoltaic Measurements: The TiO2 electrodes and the sealed cells
for photovoltaic measurements were prepared according to
literatures.[8b,12,18] The TiO2 electrode was soaked into a THF/ethanol
solution (v/v = 1/4) containing the porphyrins (0.20 mM) at 25 °C. The
electrolyte solution consisted of 0.25
[Co(bpy)3](TFSI)3, 0.1 lithium bis(trifluoromethanesulfonyl)imide
(LiTFSI), and 0.5 4-tert-butylpyridine in acetonitrile. Photovoltaic
M [Co(bpy)3](TFSI)2, 0.05 M
M
M
measurements were conducted according to our previous papers.[8b,11]
Acknowledgements
[7]
[8]
a) S. P. Pujari, L. Scheres, A. T. M. Marcelis, H. Zuilhof, Angew. Chem.
Int. Ed. 2014, 53, 6322–6356; Angew. Chem. 2014, 126, 6438–6474; b)
L. Zhang, J. M. Cole, ACS Appl. Mater. Interfaces 2015, 7, 3427–3455.
a) T. Higashino, Y. Fujimori, K. Sugiura, Y. Tsuji, S. Ito, H. Imahori,
Angew. Chem. Int. Ed. 2015, 54, 9052–9056; Angew. Chem. 2015, 127,
9180–9184; b) T. Higashino, Y. Kurumisawa, N. Cai, Y. Fujimori, Y.
Tsuji, S. Nimura, D. M. Packwood, J. Park, H. Imahori, ChemSusChem
2017, 10, 3347–3351.
This work was supported by the JSPS (KAKENHI Grant
Numbers JP18H03898 (H.I.) and JP18K14198(T.H.)). In this
work, DFT calculations were performed by the supercomputer of
ACCMS, Kyoto University.
Keywords: porphyrin • thiazole • catechol • solar cell •
anchoring group
[9]
a) I. A. Janković, Z. V. Šaponjić, M. I. Čomor, J. M. Nedeljković, J. Phys.
Chem. C 2009, 113, 12645–12652; b) Y. Ooyama, T. Yamada, T. Fujita,
Y. Harima, J. Ohshita, J. Mater. Chem. A 2014, 2, 8500–8511.
This article is protected by copyright. All rights reserved.