Organic Letters
Letter
A.; King, B. W.; Bandyopadhyay, D.; Berger, S. B.; Campobasso, N.;
Capriotti, C. A.; Cox, J. A.; Dare, L.; Dong, X.; Finger, J. N.; Grady, L.
C.; Hoffman, S. J.; Jeong, J. U.; Kang, J.; Kasparcova, V.; Lakdawala, A.
S.; Lehr, R.; McNulty, D. E.; Nagilla, R.; Ouellette, M. T.; Pao, C. S.;
Rendina, AlR.; Schaeffer, M. C.; Summerfield, J. D.; Swift, B. A.;
Totoritis, R. D.; Ward, P.; Zhang, A.; Zhang, D.; Marquis, R. W.; Bertin,
J.; Gough, P. J. DNA-Encoded Library Screening Identifies Benzo[b]-
[1,4]oxazepin-4-ones as Highly Potent and Monoselective Receptor
Interacting Protein 1 Kinase Inhibitors. J. Med. Chem. 2016, 59, 2163−
2178. (c) Usanov, D. L.; Chan, A. I.; Maianti, J. P.; Liu, D. R. Second-
generation DNA-templated macrocycle libraries for the discovery of
bioactive small molecules. Nat. Chem. 2018, 10, 704−714.
(d) Johannes, J. W.; Bates, S.; Beigie, C.; Belmonte, M.; Breen, J.;
Cao, S.; Centrella, P. A.; Clark, M. A.; Cuozzo, J. W.; Dumelin, C. E.;
Ferguson, A. D.; Habeshian, S.; Hargreaves, D.; Joubran, C.; Kazmirski,
S.; Keefe, A. D.; Lamb, M. L.; Lan, H.; Li, Y.; Ma, H.; Mlynarski, S.;
Packer, M. J.; Rawlins, P. B.; Robbins, D. W.; Shen, H.; Sigel, E. A.;
Soutter, H. H.; Su, N.; Troast, D. M.; Wang, H.; Wickson, K. F.; Wu, C.;
Zhang, Y.; Zhao, Q.; Zheng, X.; Hird, A. W. Structure Based Design of
Non-Natural Peptidic Macrocyclic Mcl-1 Inhibitors. ACS Med. Chem.
Lett. 2017, 8, 239−244.
(4) For a discussion of DNA stability concerns, see: (a) Malone, M. L.;
Paegel, B. M. What is a “DNA-Compatible” Reaction. ACS Comb. Sci.
2016, 18, 182−187. (b) Halpin, D. R.; Lee, J. A.; Wrenn, S. J.; Harbury,
P. B. DNA Display III. Solid-Phase Organic Synthesis on Unprotected
DNA. PLoS Biol. 2004, 2, 1031−1038.
(5) For select examples of DECL-compatible reactions, see: (a) Satz,
A. L.; Cai, J.; Chen, Y.; Goodnow, R.; Gruber, F.; Kowalczyk, A.;
Petersen, A.; Naderi-Oboodi, G.; Orzechowski, L.; Strebel, Q. DNA
Compatible Multistep Synthesis and Applications to DNA Encoded
(10) (a) Gamble, A. B.; Garner, J.; Gordon, C.; O’Conner, S. J. J.;
Keller, P. A. Aryl Nitro Reduction with Iron Powder or Stannous
Chloride under Ultrasonic Irradiation. Synth. Commun. 2007, 37,
2777−2786. (b) Kumar, P.; Rai, K. L. Reduction of aromatic nitro
compound to amines using zinc and aqueous chelating ethers: Mild and
efficient method for zinc activation. Chemical Papers 2012, 66, 772−
778. (c) Park, K. K.; Oh, C. H.; Joung, W. K. Sodium dithionite
reduction of nitroarenes using viologen as an electron phase-transfer
catalyst. Tetrahedron Lett. 1993, 34, 7445−7446. (d) Orlandi, M.; Tosi,
F.; Bonsignore, M.; Benaglia, M. Metal-Free Reduction of Aromatic and
Aliphatic Nitro Compounds to Amines: A HSiCl3- Mediated Reaction
of Wide General Applicability. Org. Lett. 2015, 17, 3941−3943.
(11) Du, H. C.; Huang, H. DNA-Compatible Nitro Reduction and
Synthesis of Benzimidazoles. Bioconjugate Chem. 2017, 28, 2575−2580.
(12) Ding, Y.; Chai, J.; Centrella, P. A.; Gondo, C.; DeLorey, J. L.;
Clark, M. A. Development and Synthesis of DNA-Encoded
Benzimidazole Library. ACS Comb. Sci. 2018, 20, 251−255.
(13) Du, H.-C. Unpublished results. Generally low yields and
byproducts were observed.
(14) (a) Lu, H.; Geng, Z.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Metal-Free
Reduction of Aromatic Nitro Compounds to Aromatic Amines with
B2pin2 in Isopropanol. Org. Lett. 2016, 18, 2774−2776. (b) Chen, D.;
Zhou, Y.; Zhou, H.; Liu, S.; Liu, Q.; Zhang, K.; Uozumi, Y. Metal-free
Reduction of Nitro Aromatics to Amines with B2(OH)4/H2O. Synlett
2018, 29, 1765−1768.
(15) Although the masses of our headpiece DNA substrates are large
(>12 kDa), DNA may be ionized with multiple charges leading to
complex m/z patterns in the 500−2000 range. With automated m/z
deconvolution software, small mass changes even as low as 1−2 Da can
be detected.
̈
(16) Hypodiboric acid has been utilized in other reductions; see:
(a) Cummings, S. P.; Le, T.-N.; Fernandez, G. E.; Quiambao, L. G.;
Stokes, B. J. Tetrahydroxydiboron-Mediated Palladium-Catalyzed
Transfer Hydrogenation and Deuteriation of Alkenes and Alkynes
Using Water as the Stoichiometric H or D Atom Donor. J. Am. Chem.
Soc. 2016, 138, 6107−6110. (b) Londregan, A. T.; Piotrowski, D. W.;
Xiao, J. Rapid and Selective in situ Reduction of Pyridine-N-oxides with
Tetrahydroxydiboron. Synlett 2013, 24, 2695−2700.
(17) Kasparian, A. J.; Savarin, C.; Allgeier, A. M.; Walker, S. D.
Selective Catalytic Hydrogenation of Nitro Groups in the Presence of
Activated Heteroaryl Halides. J. Org. Chem. 2011, 76, 9841−9844.
(18) We suspect this arises from intermolecular DNA interactions
and/or changes in DNA solubility in mixed aqueous−organic solutions.
(19) Miyamoto, H.; Sakumoto, C.; Takekoshi, E.; Maeda, Y.;
Hiramoto, N.; Itoh, T.; Kato, Y. Effective Method To Remove Metal
Elements from Pharmaceutical Intermediates with Polychelated Resin
Scavenger. Org. Process Res. Dev. 2015, 19, 1054−1061. See also
references cited therein.
Libraries. Bioconjugate Chem. 2015, 26, 1623−1632. (b) Kolmel, D. K.;
Loach, R. P.; Knauber, T.; Flanagan, M. E. Employing Photoredox
Catalysis for DNA-Encoded Chemistry: Decarboxylative Alkylation of
α-Amino Acids. ChemMedChem 2018, 13, 2159−2165. (c) Li, J.-Y.;
Huang, H. Development of DNA-Compatible Suzuki-Miyaura
Reaction in Aqueous Media. Bioconjugate Chem. 2018, 29, 3841−
3846. (d) Ruff, Y.; Berst, F. Efficient copper-catalyzed amination of
DNA-conjugated aryl iodides under mild aqueous conditions.
MedChemComm 2018, 9, 1188−1193. (e) Wang, J.; Lundberg, H.;
Asai, S.; Martín-Acosta, P.; Chen, J. S.; Brown, S.; Farrell, W.; Dushin,
R. G.; O’Donnell, C. J.; Ratnayake, A. S.; Richardson, P.; Liu, Z.; Qin,
T.; Blackmond, D. G.; Baran, P. S. Kinetically guided radical-based
synthesis of C(sp3)−C(sp3) linkages on DNA. Proc. Natl. Acad. Sci. U.
S. A. 2018, 115, E6404−E6410. (f) Ding, Y.; Clark, M. A. Robust
Suzuki−Miyaura Cross-Coupling on DNA-Linked Substrates. ACS
Comb. Sci. 2015, 17, 1−4. (g) Li, Y.; Gabriele, E.; Samain, F.; Favalli, N.;
Sladojevich, F.; Scheuermann, J.; Neri, D. Optimized Reaction
Conditions for Amide Bond Formation in DNA-Encoded Combina-
torial Libraries. ACS Comb. Sci. 2016, 18, 438−443.
(20) Although major mass shifts (e.g., codon ligation) can be followed
by LC−MS or gel electrophoresis, we often follow postpool DECL
synthetic steps by monitoring a spiked-in DNA substrate that can be
chromatographically separated from the DECL on LC−MS; see the
(6) Some types of DECLs can be built without semiaqueous
conditions, see: (a) MacConnell, A. B.; McEnaney, P. J.; Cavett, V.
J.; Paegel, B. M. DNA-Encoded Solid-Phase Synthesis: Encoding
Language Design and Complex Oligomer Library Synthesis. ACS
Comb. Sci. 2015, 17, 518−534. (b) Skopic, M. K.; Salamon, H.; Bugain,
O.; Jung, K.; Gohla, A.; Doetsch, L. J.; dos Santos, D.; Bhat, A.; Wagner,
B.; Brunschweiger, A. Acid- and Au(I)-mediated synthesis of
hexathymidine-DNA-heterocycle chimeras, an efficient entry to
DNA-encoded libraries inspired by drug structures. Chem. Sci. 2017,
8, 3356−3361.
(7) Nepali, K.; Lee, H.-Y.; Liou, J.-P. Nitro-Group-Containing Drugs.
(8) Blaziak, K.; Danikiewicz, W.; Mąkosza, M. How Does
Nucleophilic Aromatic Substitution Really Proceed in Nitroarenes?
Computational Prediction and Experimental Verification. J. Am. Chem.
Soc. 2016, 138, 7276−7281.
(9) For a recent review of nitro reduction conditions, see: Orlandi, M.;
Brenna, D.; Harms, R.; Jost, S.; Benaglia, M. Recent Developments in
the Reduction of Aromatic and Aliphatic Nitro Compounds to Amines.
Org. Process Res. Dev. 2018, 22, 430−445.
̌
́
(21) As our DECLs are built with chemically modified, intra-
molecularly joined segments of dsDNA, amplification does not proceed
at theoretical rates. Furthermore, amplification efficiency is significantly
affected by the design of adapters added to enable amplification/
sequencing/decoding (e.g., degenerate segments, primer overhangs,
etc.). Separately, DNA sequence fidelity is affected by the chosen
method of DNA sequencing and sample preparation. However, analysis
̈
of hundreds of naive/selection experiments using dozens of DECLs
that have been produced/sequenced with identical overall DNA
architectures/methods have provided an experimental baseline to
which can compare the performance of new DECLs.
(22) Assuming that equal concentrations of cycle 1 codons are present
in the library sample, the observed counts for cycle 1 codons after DNA
sequencing should follow a normal distribution centered at the average
̈
count. DNA sequencing of the naive DECL resulted in a number of
decoded molecules equal to 21674.6 times the diversity of the cycle 1
E
Org. Lett. XXXX, XXX, XXX−XXX