8974
J . Org. Chem. 1997, 62, 8974-8975
Sch em e 1
Ra d ica l F r a gm en ta tion of â-Hyd r oxy
Azid es. Syn th esis of Ch ir a l Nitr iles
Rosendo Herna´ndez, Elisa I. Leo´n, Pilar Moreno, and
Ernesto Sua´rez*
Instituto de Productos Naturales y Agrobiologı´a del CSIC,
Carretera de La Esperanza 3, 38206-La Laguna, Tenerife,
Spain
Received October 6, 1997
In previous papers, we have described the preparation
of chiral building blocks by fragmentation of anomeric
alkoxy radicals of carbohydrates.1 Moreover, nitriles
have proven to be extremely versatile functional groups.2
They may undergo a variety of reactions, especially
reduction, alkylation of their enolates, enzymatic hy-
drolysis to acids and amides by nitrile hydratase,3 Ritter
reaction,4 and many other synthetically useful transfor-
mations.
Ta ble 1. Nitr iles by â-F r a gm en ta tion of â-Hyd r oxy
Azid esa
In this paper, we develop a new protocol for the
synthesis of nitriles by â-fragmentation of alkoxy radicals
by reaction of â-hydroxy azides with (diacetoxyiodo)ben-
zene (DIB) and iodine. In particular, this reaction has
been applied to the synthesis of chiral nitriles by â-frag-
mentation of anomeric alkoxy radicals from 2-azido-2-
deoxy sugars, as shown in Scheme 1.
Related methodologies for the synthesis of cyano
ketones by cleavage of trisubstituted cyclic olefins with
DIB-trimethylsilyl azide, LTA-trimethylsilyl azide,5 or
photooxygenation in the presence of NaN3/Cu(OTf)2 have
been described.6 Moreover, an interesting synthesis of
aldononitriles by reaction of N-bromoglycoxylimines with
Zn/Ag-graphite or C8K has been reported.7
Several excellent methods exist in the literature for
the synthesis of â-hydroxy azides in general by electro-
philic or radical addition reactions to olefins.8 We have
prepared 3,4,6-tri-O-acetyl-2-azido-2-deoxy-D-glucose9 (1)
by reaction of 3,4,6-tri-O-acetyl-D-glucal with sodium
azide/ceric ammonium nitrate10 and subsequent anomeric
denitration11 with hydrazine acetate of the â-nitro azide
obtained. Reaction of this compound with DIB and iodine
(1) (a) Armas, P.; Francisco, C. G.; Sua´rez, E. Angew. Chem., Int.
Ed. Engl. 1992, 31, 772-774. (b) Armas, P.; Francisco, C. G.; Sua´rez,
E J . Am. Chem. Soc. 1993, 115, 8865-8866. (c) Armas, P.; Francisco,
C. G.; Sua´rez, E. Tetrahedron Lett. 1993, 34, 7331-7334. (d) Francisco,
C. G.; Gonza´lez, C. C.; Sua´rez, E. Tetrahedron Lett. 1996, 37, 1687-
1690. (e) Francisco, C. G.; Freire, R.; Gonza´lez, C. C.; Sua´rez, E.
Tetrahedron: Asymmetry 1997, 8, 1971-1974.
(2) (a) The Chemistry of the Cyano Group; Rappoport, Z., Ed.;
Interscience: New York, 1970. (b) Arseniyadis, S.; Kyler, K. S.; Watt,
D. S. In Organic Reactions; Dauben, W. G., Ed.; J ohn Wiley: New York,
1984; Vol. 31, pp 1-374.
a
All reactions were performed in dry dichloromethane with
(3) (a) Brennam, B. A.; Alms, G.; Nelson, M. J .; Durney, L. T.;
Scarrow, R. C. J . Am. Chem. Soc. 1996, 118, 9194-9195. (b) Taylor,
S. K.; Chmiel, H. H.; Simons, L. J .; Vyvyan, J . R. J . Org. Chem. 1996,
61, 9084-9085. (c) Maddrell, S. J .; Turner, N. J .; Kerridge, A.; Willetts,
A. J .; Crosby, J . Tetrahedron Lett. 1996, 37, 6001-6004.
(4) Bishop, R. In Comprehensive Organic Synthesis; Trost, B. M.;
Fleming, I.; Eds.; Pergamon Press: Oxford, 1991; Vol. 6, pp 261-300.
(5) Zbiral, E.; Nestler, G.; Kischa, K. Tetrahedron 1970, 26, 1427-
1434. (b) Zbiral, E.; Nestler, G. Tetrahedron 1970, 26, 2945-2951. (c)
Ehrenfreund, J .; Zbiral, E. Tetrahedron 1972, 28, 1697-1704.
(6) Shimizu, I.; Fujita, M.; Nakajima, T.; Sato, T. Synlett 1997, 887-
888.
(diacetoxyiodo)benzene (1.2 mmol) and iodine (1 mmol) per mmol
of substrate. The monoterpene substrates 7 and 9 were irradiated
with 2 × 80W tungsten-filament lamps.
under the conditions shown in Table 1 (entry 1) gave the
arabinonitrile derivative 2.
In a typical procedure, a solution of â-hydroxy azide 1
(102 mg, 0.31 mmol) in CH2Cl2 (20 mL) containing DIB
(120 mg, 0.37 mmol) and iodine (79 mg, 0.31 mmol) was
stirred at 20 °C for 2 h. The reaction mixture was then
(7) Fu¨rstner, A.; Praly, J .-P. Angew. Chem., Int. Ed. Engl. 1994, 33,
751-753.
(8) Boche, G. In Stereoselective Synthesis, Methods of Organic
Chemistry (Houben-Weyl); Helmchen, G., Hoffmann, R. W., Mulzer,
J ., Schaumann, E., Eds.; Thieme: Stuttgart, 1995; Vol. E 21-9; pp
5190-5221.
(9) Grundler, G.; Schmidt, R. R. Liebigs Ann. Chem. 1984, 1826-
1847.
(10) (a) Lemieux, R. U.; Ratcliffe, R. M. Can. J . Chem. 1979, 57,
1244-1251. (b) Lin, C.-H.; Sugai, T.; Halcomb, R. L.; Ichikawa, Y.;
Wong, C.-H. J . Am. Chem. Soc. 1992, 114, 10138-10145. (c) Bemiller,
J . N.; Blazis, V. J .; Myers, R. W. J . Carbohydr. Chem. 1990, 9, 39-57.
(11) Toyokuni, T.; Cai, S.; Dean, B. Synthesis 1992, 1236-1238.
S0022-3263(97)01836-7 CCC: $14.00 © 1997 American Chemical Society