7502
J. A. Hengst et al. / Bioorg. Med. Chem. Lett. 20 (2010) 7498–7502
spectrometer. Chemical shifts (d) were reported in parts per million downfield
from the internal standard. The signals are quoted as s (singlet), d (doublet), t
(triplet), (multiplet). High-resolution MS (EI) were determined at the
Chemistry Instrumentation Center, State University of New York at Buffalo, NY.
Thin-layer chromatography (TLC) was developed on aluminum-supported pre-
coated silica gel plates (EM industries, Gibbstown, NJ). Column chromatography
was conducted on silica gel (60–200 mesh).
2-Hydroxy-4-(4-methoxyphenyl)-4-oxomethylbutenoate (22). A solution sodium
(0.92 g, 39.9 mmol) in methanol (10 mL) was added to a mixture containing 4-
methoxyacetophenone (21) (5.0 g, 33.33 mmol) and dimethyl oxalate (4.33 g,
36.66 mmol) in benzene (150 mL) dropwise at 0 °C. After the addition was
complete, the mixture was allowed to warm to room temperature, stirred
overnight, quenched with 1 N HCl solution, and filtered. The residue was
There is ample evidence to suggest that SphK derived S1P
production has a vital role in tumor development, progression of
tumors to highly aggressive and metastatic phenotypes (tumori-
genesis) and the development of multi-drug resistance (MDR).
However, it remains unclear whether strategies that target SphK1
or SphK2 specifically or SphKs in general are more efficacious for
the prevention/treatment of hyperproliferative diseases including
cancer. Thus with the identification of SphK1 specific small-mole-
cule non-lipid like inhibitors as reported herein, we may now be
able to address this central question of SphK pathophysiology.
m
purified through silica gel column chromatography using
a mixture of
methylene chloride/hexanes (7:3) as an eluent to yield 6.0 g (87%) of 22 as a
pale-yellow solid; mp 97–98 °C; 1H NMR (CDCl3): d 8.01 (2H, d, J = 7.0 Hz), 7.06
(1H, s), 7.01 (2H, d, J = 7.0 Hz), 3.96 (3H, s), 3.92 (3H, s).
Acknowledgements
5-(4-Methoxyphenyl)-2H-pyrazole-3-carboxylic acid hydrazide (23). To a solution
of methyl ester 22 (5.0 g, 24.0 mmol) in EtOH (150 mL) was added anhydrous
hydrazine (3.1 g, 96.0 mmol) and the reaction mixture was refluxed for 6 h
under nitrogen. The reaction mixture was cooled to room temperature, the
precipitated white solid was filtered and washed with a mixture of ethanol/
hexanes (1:9) to yield 5.0 g (90%) of 23 as a white solid; mp 231–232 °C; 1H
NMR (DMSO-d6): d 13.5 (1H, s), 7.7 (2H, d, J = 8.5 Hz), 7.02 (3H, m), 4.49–4.45
(2H, m), 3.8 (3H, s); MS (ESI) 233 (M++1).
This research was supported by the Jake Gittlen Cancer Research
Institute and by a grant from Susan G. Komen for the Cure.
References and notes
1. Argraves, K. M.; Obeid, L. M.; Hannun, Y. A. Adv. Exp. Med. Biol. 2002, 507, 439.
2. Cuvillier, O. Biochim. Biophys. Acta 2002, 1585, 153.
3. Hait, N. C.; Oskeritzian, C. A.; Paugh, S. W.; Milstien, S.; Spiegel, S. Biochim.
Biophys. Acta 2006, 1758, 2016.
4. Maceyka, M.; Payne, S. G.; Milstien, S.; Spiegel, S. Biochim. Biophys. Acta 2002,
1585, 193.
5. Huwiler, A.; Pfeilschifter, J. Pharmacol. Ther. 2009, 124, 96.
6. Nixon, G. F. Br. J. Pharmacol. 2009, 158, 982.
7. Saddoughi, S. A.; Song, P.; Ogretmen, B. Subcell Biochem. 2008, 49, 413.
8. Pitman, M. R.; Pitson, S. M. Curr. Cancer Drug Targets 2010, 10, 354.
9. Sakakura, C.; Sweeney, E. A.; Shirahama, T.; Hagiwara, A.; Yamaguchi, T.;
Takahashi, T.; Hakomori, S.; Igarashi, Y. Biochem. Biophys. Res. Commun. 1998,
246, 827.
10. Sweeney, E. A.; Sakakura, C.; Shirahama, T.; Masamune, A.; Ohta, H.; Hakomori,
S.; Igarashi, Y. Int. J. Cancer 1996, 66, 358.
11. French, K. J.; Schrecengost, R. S.; Lee, B. D.; Zhuang, Y.; Smith, S. N.; Eberly, J. L.;
Yun, J. K.; Smith, C. D. Cancer Res. 2003, 63, 5962.
N0-[1-(3,4-Dimethoxyphenyl)ethylidene]-3-(4-methoxyphenyl)-1H-pyrazole-5-
carbohydrazide (20). To a solution of hydrazide 23 (1.0 g, 4.3 mmol) in DMSO
(50 mL) was added 30,40-dimethoxyacetophenone (0.85 g, 4.74 mmol) in DMSO
(10 mL) followed by a catalytic amount of acetic acid. The reaction mixture was
stirred overnight at room temperature and then poured into water (100 mL).
The solid thus formed was filtered and washed with CH2Cl2/hexanes (7:3) to
yield the crude product which was purified by column chromatography using a
mixture of CH2Cl2/MeOH (9:1) as an eluant to afford 1.1 g (65%) of 20 as a
white solid; mp 210–211 °C; 1H NMR (DMSO-d6): d 7.77 (2H, d, J = 8.5 Hz), 7.48
(1H, d, J = 2.0 Hz), 7.42 (1H, s), 7.06–7.01 (4H, m), 3.81 (3H, s), 3.82 (3H, s), 3.18
(3H, s), 2.35 (3H, s). HRMS (ESI) calcd for C21H22N4O4H, 395.1714; found,
395.1717.
22. Cheng, Y.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.
23. Hengst, J. A.; Guilford, J. M.; Conroy, E. J.; Wang, X.; Yun, J. K. Arch. Biochem.
Biophys. 2010, 494, 23.
24. Vichai, V.; Kirtikara, K. Nat. Protocol 2006, 1, 1112.
25. Kilker, R. L.; Hartl, M. W.; Rutherford, T. M.; Planas-Silva, M. D. J. Steroid
Biochem. Mol. Biol. 2004, 92, 63.
26. Batist, G.; Tulpule, A.; Sinha, B. K.; Katki, A. G.; Myers, C. E.; Cowan, K. H. J. Biol.
Chem. 1986, 261, 15544.
27. Billich, A.; Bornancin, F.; Mechtcheriakova, D.; Natt, F.; Huesken, D.;
Baumruker, T. Cell. Signalling 2005, 17, 1203.
28. Leroux, M. E.; Auzenne, E.; Evans, R.; Hail, N., Jr.; Spohn, W.; Ghosh, S. C.;
Farquhar, D.; McDonnell, T.; Klostergaard, J. Prostate 2007, 67, 1699.
29. Ren, S.; Xin, C.; Pfeilschifter, J.; Huwiler, A. Cell. Physiol. Biochem. 2010, 26, 97.
30. Bektas, M.; Johnson, S. P.; Poe, W. E.; Bigner, D. D.; Friedman, H. S. Cancer
Chemother. Pharmacol. 2009, 64, 1053.
31. Van Brocklyn, J. R.; Jackson, C. A.; Pearl, D. K.; Kotur, M. S.; Snyder, P. J.; Prior, T.
W. J. Neuropathol. Exp. Neurol. 2005, 64, 695.
32. Ruckhaberle, E.; Rody, A.; Engels, K.; Gaetje, R.; von Minckwitz, G.; Schiffmann,
S.; Grosch, S.; Geisslinger, G.; Holtrich, U.; Karn, T.; Kaufmann, M. Breast Cancer
Res. Treat. 2008, 112, 41.
33. Bonhoure, E.; Pchejetski, D.; Aouali, N.; Morjani, H.; Levade, T.; Kohama, T.;
Cuvillier, O. Leukemia 2006, 20, 95.
34. Weigert, A.; Schiffmann, S.; Sekar, D.; Ley, S.; Menrad, H.; Werno, C.; Grosch, S.;
Geisslinger, G.; Brune, B. Int. J. Cancer 2009, 125, 2114.
35. Hait, N. C.; Sarkar, S.; Le Stunff, H.; Mikami, A.; Maceyka, M.; Milstien, S.;
Spiegel, S. J. Biol. Chem. 2005, 280, 29462.
36. Hengst, J. A.; Guilford, J. M.; Fox, T. E.; Wang, X.; Conroy, E. J.; Yun, J. K. Arch.
Biochem. Biophys. 2009, 492, 62.
12. French, K. J.; Upson, J. J.; Keller, S. N.; Zhuang, Y.; Yun, J. K.; Smith, C. D. J.
Pharmacol. Exp. Ther. 2006, 318, 596.
13. Bhal, S. K.; Kassam, K.; Peirson, I. G.; Pearl, G. M. Mol. Pharm. 2007, 4, 556.
14. All compounds employed in this study were purchased from Chembridge Corp
(San Diego, CA). Compounds were dissolved in DMSO as 1 mM stocks.
15. Wilson, A. S.; Davis, C. D.; Williams, D. P.; Buckpitt, A. R.; Pirmohamed, M.;
Park, B. K. Toxicology 1996, 114, 233.
16. Zheng, J.; Cho, M.; Jones, A. D.; Hammock, B. D. Chem. Res. Toxicol. 1997, 10,
1008.
17. Waidyanatha, S.; Rappaport, S. M. Chem. Biol. Interact. 2008, 172, 105.
18. Saeed, M.; Higginbotham, S.; Gaikwad, N.; Chakravarti, D.; Rogan, E.; Cavalieri,
E. Free Radical Biol. Med. 2009, 47, 1075.
19. In vitro SphK activity assays were performed as detailed previously23 with
minor modifications. D-erythro-Sphingosine (Sph; 25 lM) was employed for all
inhibitor screen assays and was delivered in sphingosine kinase activity assay
buffer (SKAAB) without conjugation to BSA or Triton X-100 micelle formation.
All compounds were employed at 10.7 lM for the initial inhibitor screens.
DMSO was employed in control reactions and did not exceed 5% of the total
reaction volume. For SphK2 specific activity assays, 1 M KCl was included in
the standard SKAAB buffer. Ki and inhibitory mechanism determination
analyses were performed by linear regression analysis using GraphPad Prism 5.
20. Sharma, A. K.; Sk, U. H.; Gimbor, M. A.; Hengst, J. A.; Wang, X.; Yun, J.; Amin, S.
Eur. J. Med. Chem. 2010, 45, 4149.
21. Melting points were recorded on a Fischer–Johns melting point apparatus and
are uncorrected. NMR spectra were recorded using a Bruker Avance 500 MHz