In conclusion, we have shown that new functionalized meso-
porous material AFS-1 can be used as an extremely stable and
reusable catalyst for the preparation of xanthenes from a mixture
of b-naphthol and aromatic aldehyde. This reaction proceeds
smoothly at room temperature in the absence of any other metal-
containing species and the catalytic efficiency is restored in
repeated reaction cycles. This is the first example of organo-
catalysis promoted by a –COOH functionalized mesoporous
silica for the synthesis of xanthenes and it opens up a new
direction for the development of catalysts devoid of toxic metals
and their further applications in various organic transformations.
JM wishes to thank CSIR, New Delhi, for Senior Research
Fellowship.
Scheme 2 General protocol for xanthene synthesis over AFS-1.
shifts at –61.5 and –110.0 ppm, which could be attributed to the
T3 ((OH)(OSi)3Si–R) and Q4 (Si(OSi)4) species, respectively.19
Presence of high concentration of Q4 and T3 species in the
NMR spectrum of AFS-1 suggested a considerably defect-less
cross-linked network in the material. Thermal analysis of SBA-
15, 3-APTES-functionalized SBA-15 and AFS-1 (ESIw, Fig. S3
and S4) has been carried out to compare the stability of the
catalyst, which is an important issue associated with a hetero-
geneous catalytic system. For the synthesis of xanthene, we have
carried out the reactions at room temperature, but AFS-1 is
found to have sufficient thermal stability to carry out other
organocatalytic reactions, which can occur at higher temperature.
The total weight loss for the material upto 773 K is found to be
16% which takes place in two steps. The first step is associated
with the removal of physisorbed water, whereas the second
step involving combustion of the organic functionality present
in the organosilane framework starts above 473 K.
Notes and references
1 R. F. Schinazi and R. A. Floyd, PCT Int. Appl., 1990, WO 9013296
A1 19901115.
2 (a) E. Krumkalns, U.S., US 3335148 19670808, 1967; (b) W. Hong,
L. Lei, Z. Shiyun, L. Yahong and C. Weimin, Curr. Microbiol.,
2006, 52, 1–5.
3 H. N. Hafez, M. I. Hegab, I. S. Ahmed-Farag and A. B. A.
El-Gazzar, Bioorg. Med. Chem. Lett., 2008, 18, 4538–4543.
4 F. Mao, W.-Y. Leung and C.-Y. Cheung, U.S. Pat. Appl. Publ.,
2010, US 20100197030 A1 20100805.
5 M. Bass, T. F. Deutsch and M. J. Weber, Appl. Phys. Lett., 1968,
13, 120–124.
AFS-1 is investigated for its catalytic activity for the prepara-
tion of xanthene in the absence of any other metal co-catalyst. It
is found that condensation between aromatic aldehydes (1a–e)
and 2-naphthol (2) at room temperature (Scheme 2, Table 1)
produces 14-aryl-14H-dibenzo [a,j] xanthenes in good yields
over our AFS-1 material. The products are characterized by 1H
and 13C NMR spectroscopy and the data are given in ESI.w
The heterogeneous nature of the catalyst has been confirmed
by performing in situ filtration experiment for the reaction
between 4-nitrobenzaldehyde and 2-naphthol, as a representative
case. The catalyst has been separated from the reaction
mixture by filtration after 1 h (30% conversion). The reaction
was continued with the filtrate for another 4 h but no further
conversion took place. To test the catalytic efficiency of
AFS-1, the recovered catalyst was successively used in six
repeating cycles (ESIw, Fig. S5). No appreciable loss of
reactivity was observed. After 4 h reaction time in each of
the cycles, above 75% conversion took place and the same
catalyst can be used repetitively to give very good overall
turnover numbers (TON, Table 1). Thus we see that AFS-1
acts as a highly efficient and recyclable organocatalyst for the
synthesis of xanthenes.
6 (a) E. Kuwana and E. M. Sevick-Muraca, Anal. Chem., 2003, 75,
4325–4329; (b) K. P. McNamara, T. Nguyen, G. Dumitrascu, J. Ji,
N. Rosenzweig and Z. Rosenzweig, Anal. Chem., 2001, 73, 3240–3246.
7 (a) Y.-H. Liu, X.-Y. Tao, L.-Q. Lei and Z.-H. Zhang, Synth.
Commun., 2009, 39, 580–589; (b) X. Huang and T. X. Zhang,
J. Org. Chem., 2010, 75, 506–509.
8 M. Dabiri, M. Baghbanzadeh, M. S. Nikcheh and
E. Arzroomchilar, Bioorg. Med. Chem. Lett., 2008, 18, 436–438.
9 B. Das, B. Ravikanth, R. Ramu, K. Laxminarayana and
B. V. Rao, J. Mol. Catal. A: Chem., 2006, 255, 74–77.
10 S. Bertelsen and K. A. Jorgensen, Chem. Soc. Rev., 2009, 38,
2178–2189.
11 (a) J. Franzen and A. Fisher, Angew. Chem., Int. Ed., 2009, 48,
´
787–791; (b) B. Tan, X. F. Zeng, Y. P. Lu, P. J. Chua and
G. F. Zhong, Org. Lett., 2009, 11, 1927–1930; (c) N. Bravo,
I. Mon, X. Companyo, A. N. Alba, A. Moyano and R. Rios,
Tetrahedron Lett., 2009, 50, 6624–6626; (d) S. Piovesana, D. M.
S. Schietroma, L. G. Tulli, M. R. Monaco and M. Bella, Chem.
Commun., 2010, 46, 5160–5162.
12 (a) M. E. Davis, Nature, 2002, 417, 813–821; (b) R. K. Zeidan,
S.-J. Hwang and M. E. Davis, Angew. Chem., Int. Ed., 2006, 45,
6332–6335; (c) E. L. Margelefsky, R. K. Zeidan and M. E. Davis,
Chem. Soc. Rev., 2008, 37, 1118–1126; (d) S. A. El-Safty,
M. Mekawy, A. Yamaguchi, A. Shahat, K. Ogawa and
N. Teramae, Chem. Commun., 2010, 46, 3917–3919.
13 (a) S. Fiorilli, B. Onida, B. Bonelli and E. Garrone, J. Phys. Chem.
B, 2005, 109, 16725–16729; (b) J. S. Gao, J. Liu, S. Y. Bai,
P. Y. Wang, H. Zhong, Q. H. Yang and C. Li, J. Mater. Chem.,
2009, 19, 8580–8588.
Table 1 Synthesis of 14-aryl-14H-dibenzo [a,j] xanthenes
14 M. A. Naik, D. Sachdev and A. Dubey, Catal. Commun., 2010, 11,
1148–1153.
15 S. K. Das, M. K. Bhunia and A. Bhaumik, J. Solid State Chem.,
2010, 183, 1326–1333.
Entry Aldehyde
Time/h Yield (%) Product TON
16 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and
J. S. Beck, Nature, 1992, 359, 710–712.
1
2
3
4.0
5.0
4.5
82
80
75
3a
3b
3c
9.1
8.9
8.3
17 M. H. Lim and A. Stein, Chem. Mater., 1999, 11, 3285–3295.
18 D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka and
G. D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024–6036.
19 (a) J. Liu, Q. H. Yang, M. P. Kapoor, N. Satoyama, S. Inagaki,
J. Yang and L. Zhang, J. Phys. Chem. B, 2005, 109, 12250–12256;
(b) B. D. Hatton, K. Kandskron, W. Whitnall, D. D. Perovic and
G. A. Ozin, Adv. Funct. Mater., 2005, 15, 823–829; (c) U. Diaz,
T. Garcia, A. Velty and A. Corma, J. Mater. Chem., 2009, 19,
5970–5979; (d) A. Modak, J. Mondal, V. K. Aswal and
A. Bhaumik, J. Mater. Chem., 2010, 20, 8099–8106.
4
5
4.0
5.0
75
78
3d
3e
8.3
8.7
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 6677–6679 6679