622
M. A. Pasha, V. P. Jayashankara / Bioorg. Med. Chem. Lett. 17 (2007) 621–623
R
CHO
OH
Iodine (0.25 mmole)
90 -95 0C
+
2
R
O
R = H, CH3, NO2, OCH3, Cl, Br, F
( 3a - j )
1
2
Scheme 1.
Table 1. Iodine catalyzed synthesis of aryl-14H-dibenzo[a, j]xanthenes
Entry
R (1)
Time (min)
Producta (3)
Yieldb (%)
Melting points (°C)
Found Reported
1
2
3
4
5
6
7
8
9
10
H
20
15
20
20
20
20
15
15
15
15
a
b
c
d
e
f
90
92
95
94
93
93
94
93
90
94
182–3
205–7
310
183
205
312
213
228
197–8
296
287
215
238
4-OCH3
4-NO2
2-NO2
4-CH3
3-CH3
4-Br
214
230
198
296
g
h
i
4-Cl
2-Cl
290
215–16
236
4-F
j
cMelting points of compounds are consistent with reported values (Refs. 12a,b,13,14).
a All the products are known, characterized by IR, NMR spectral analysis and compared with the authentic samples.
b Isolated yields.
2. Lambert, R. W.; Martin, J. A.; Merrett, J. H.; Parker, K.
E. B.; Thomas, G. J. PCT Int. Appl. WO9706178, 1997.
3. Poupelin, J. P.; Ruf, G. S.; Blanpin, O. F.; Narcisse, G.;
Ernouf, G. U.; Lacroix, R. Eur. J. Med. Chem. 1978, 13,
67.
4. Ion, R. M.; Albulescu, C.; Sirkecioglu, O.; Talinli, N.
Intenet. Photochem. Photobiol. 2000.
5. (a) Menchen, S. M.; Benson, S. C.; Lam, J. Y. L.; Zhen,
W.; Sun, D.; Rosenblum, B. B.; Khan, S. H.; Taing, M.
U.S. Patent 6,583, 168, 2003; (b) Banerjee, A.; Mukherjee,
A. K. Stain Technol. 1981, 56, 83.
6. (a) Bekaert, A.; Andrieux, J.; Plat, M. Tetrahedron Lett.
1992, 33, 2805; (b) Sarma, R. J.; Baruah, J. B. Dyes
Pigments 2005, 64, 91; (c) Buehler, C. A.; Cooper, D. E.;
Scrudder, E. O. J. Org. Chem. 1943, 8, 316.
7. Licudine, P. J. A.; Kawate, M. K.; Li, Q. X. J. Agric. Food
Chem. 1997, 45, 766.
8. Wang, J. Q.; Harvey, R. G. Tetrahedron 2002, 58, 5927.
9. (a) Knignt, D. W.; Little, P. B. J. Chem. Soc., Pertin
Trans. 1 2001, 14, 1771; (b) Knignt, D. W.; Little, P. B.
Synlett 1998, 1141.
10. Casiraghi, G.; Casnati, G.; Catellani, M.; Cornia, M.
Tetrahedron Lett. 1973, 14, 679.
To demonstrate the protocol, we selected p-anisaldehyde
as the model substrate and treated with b-naphthol in the
presence of catalytic iodine at 90–95 °C for 15 min to get
14-(40-methoxyphenyl)-14H-dibenzo[a, j]xanthene in 92%
yield (Table 1, entry 2). The interesting feature of the
present method of synthesis of aryl-14H-dibenzo[a, j]-
xanthenes is that, the substituents OCH3, Cl, Br, F and
NO2 are unaffected under the reaction condition.
Acknowledgements
One of the authors Jayashankara V. P. thanks Sri Sri Sri
Balagangadharanatha Swamyji of Adichunchanagiri
Mutt for the blessings and Mr. Mohamed Ghouse and
family, Nagamangala, Mandya District, Karnataka,
India, for the encouragement. Acknowledgements are
also due to SIF and Department of Organic Chemistry,
Indian Institute of Science, Bangalore, for recording
NMR spectra.
11. (a) Buu-Hoi, N. P.; Xuong, N. D. J. Org. Chem. 1951, 16,
1633; (b) Zad, A. K.; Kazemi, Z.; Rudbari, H. A.
J. Korean Chem. Soc. 2002, 46, 541.
Supplementary data
Supplementary data associated with this article can be
12. (a) Rajitha, B.; Sunil Kumar, B.; Reddy, Y. T.; Reddy, P.
N.; Sreenivasulu, N. Tetrahedron Lett. 2005, 46, 8691,
Sulfamic acid catalysed synthesis of aryl-14H-dibenzo[a,
j]xanthenes under conventional heating and under micro-
wave irradiation is reported, the reactions take 6–12 h for
completion under conventional heating at 125 °C; (b)
Woodroofe, C. C.; Lim, M. H.; Bu, W.; Lippard, S. J.
Tetrahedron. Lett. 2005, 61, 3097, Synthesis of carboxylate-
and sulfonate-substituted xanthene fluorophores in the
References and notes
1. Hideo, T. Chem. Abstr. 1981, 95, 80922b, Jpn. Tokkyo
Koho JP 56005480, 1981.