Communication
ChemComm
preference to Y527 (cf. entries 2 & 3). Although there are three
carboxylates available for alkylation (C-terminus, E524 and
E531), phosphate alkylation is the major product along with a
8 M. R. J. Vall ´e e, P. Majkut, D. Krause, M. Gerrits and C. P. R.
Hackenberger, Chem. – Eur. J., 2015, 21, 970–974.
9
S. Capolicchio, D. T. Thakor, A. Linden and H. J. Jessen, Angew.
Chem., Int. Ed., 2013, 52, 6912–6916.
small amount of carboxylate alkylation (13a & 13b, sites of 10 S. Capolicchio, H. Wang, D. T. Thakor, S. B. Shears and H. J. Jessen,
Angew. Chem., Int. Ed., 2014, 53, 9508–9511.
1 I. Pavlovic, D. T. Thakor, L. Bigler, M. S. Wilson, D. Laha, G. Schaaf,
A. Saiardi and H. J. Jessen, Angew. Chem., Int. Ed., 2015, 54, 9622–9626.
alkylation are determined by MS/MS sequencing, see the ESI†
for pages 39–41 for details). In addition, while 2 equivalents of
1
1
d leads to 43% conversion of peptide 10, dephosphorylated 12 H.-H. Chou and R. T. Raines, J. Am. Chem. Soc., 2013, 135, 14936–14939.
1
3 N. A. McGrath, K. A. Andersen, A. K. F. Davis, J. E. Lomax and
R. T. Raines, Chem. Sci., 2015, 6, 752–755.
peptide 11 is not detectably alkylated under the same condi-
tions (see ESI† page 32). Entries 3–7 investigate the effect of
14 K. A. Mix and R. T. Raines, Org. Lett., 2015, 17, 2358–2361.
adding more diazo compound and the ideal seems to be 3 15 N. Nimura, T. Kinoshita, T. Yoshida, A. Uetake and C. Nakai, Anal.
Chem., 1988, 60, 2067–2070.
equivalents; further addition of 1d increases consumption of
1
6 A. Laayoun, M. Kotera, I. Sothier, E. Tr ´e visiol, E. Bernal-M ´e ndez,
C. Bourget, L. Menou, J. Lhomme and A. Troesch, Bioconjugate
Chem., 2003, 14, 1298–1306.
7 M. Kotera, M.-L. Dheu, A. Milet, J. Lhomme and A. Laayoun, Bioorg.
Med. Chem. Lett., 2005, 15, 705–708.
8 C. Bourget, E. Tr ´e visiol, I. Bridon, M. Kotera, J. Lhomme and
A. Laayoun, Bioorg. Med. Chem., 2005, 13, 1453–1461.
9 J. Engels, Bioorg. Chem., 1979, 8, 9–16.
0 S. Shah, P. K. Jain, A. Kala, D. Karunakaran and S. H. Friedman,
Nucleic Acids Res., 2009, 37, 4508–4517.
peptide 10, but also leads to substantial amounts of double
alkylation with little change in the yield of 12 (see number in
parenthesis in the conversion column of Table 2). A second study
on a model 5-mer phosphorylated peptide is given in the ESI† on
pages 43–46 and supports the generality of the observations in
Table 2. The results in Table 2 again indicate how pH can be
exploited to control selectivity in Brønsted acid alkylation, even
in the presence of competing acids.
The accepted mechanism of O-alkylation by diazo com-
pounds predicts that the pH of the medium could be used to
steer O-alkylation preference among Brønsted acids. We have
validated this prediction and shown how this property can be used
to selectively target phosphates in a mixture of other Brønsted acids
including carboxylic acids and sulfonic acids.
1
1
1
2
21 P. K. Jain, S. Shah and S. H. Friedman, J. Am. Chem. Soc., 2011, 133,
40–446.
4
2
2
2 D. Brown, D. Magrath and A. R. Todd, J. Chem. Soc., 1955, 4396–4401.
3 J. W. Walker, G. P. Reid, J. A. McCray and D. R. Trentham, J. Am.
Chem. Soc., 1988, 110, 7170–7177.
2
2
2
2
4 J. W. Walker, J. Feeney and D. R. Trentham, Biochemistry, 1989, 28,
3272–3280.
5 H. Ando, T. Furuta, R. Y. Tsien and H. Okamoto, Nat. Genet., 2001,
28, 317–325.
6 K. Tishinov, K. Schmidt, D. H ¨a ussinger and D. G. Gillingham,
Angew. Chem., Int. Ed., 2012, 51, 12000–12004.
In its present form the method is most useful for creating
photo-caged variants of peptides, nucleic acids, and phosphate
7 K. Tishinov, N. Fei and D. Gillingham, Chem. Sci., 2013, 4, 4401–4406.
bearing metabolites. An exciting future application, however, 28 N. Fei, D. Haussinger, S. Blumli, B.-J. Laventie, L. D. Bizzini,
K. Zimmermann, U. Jenal and D. Gillingham, Chem. Commun.,
014, 50, 8499–8502.
3
4,36
would be in phosphoproteomics
and we are currently
2
working to apply the method in this area.
2
9 J. F. McGarrity and T. Smyth, J. Am. Chem. Soc., 1980, 102, 7303–7308.
0 E. K u¨ hnel, D. D. P. Laffan, G. C. Lloyd-Jones, T. Mart ´ı nez del Campo,
I. R. Shepperson and J. L. Slaughter, Angew. Chem., Int. Ed., 2007, 46,
7075–7078.
3
Notes and references
3
1 J. Lelievre, P. G. Farrell and F. Terrier, J. Chem. Soc., Perkin Trans. 2,
1
2
F. H. Westheimer, Science, 1987, 235, 1173–1178.
1986, 333–336.
S. C. L. Kamerlin, P. K. Sharma, R. B. Prasad and A. Warshel, Q. Rev. 32 P. Kl ´a n, T. ˇS olomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina,
Biophys., 2013, 46, 1–132.
V. Popik, A. Kostikov and J. Wirz, Chem. Rev., 2012, 113, 119–191.
33 K. Schmelzle and F. M. White, Curr. Opin. Biotechnol., 2006, 17,
406–414.
34 K. Engholm-Keller and M. R. Larsen, Proteomics, 2013, 13, 910–931.
35 J. M. Summy and G. E. Gallick, Cancer Metastasis Rev., 2003, 22,
337–358.
3
4
P. Cohen, Nat. Cell Biol., 2002, 4, E127–E130.
J. V. Olsen, B. Blagoev, F. Gnad, B. Macek, C. Kumar, P. Mortensen
and M. Mann, Cell, 2006, 127, 635–648.
T. J. Yeatman, Nat. Rev. Cancer, 2004, 4, 470–480.
S. J. Parsons and J. T. Parsons, Oncogene, 2004, 23, 7906–7909.
5
6
7
L. C. Kim, L. Song and E. B. Haura, Nat. Rev. Clin. Oncol., 2009, 6, 36 B. Macek, M. Mann and J. V. Olsen, Annu. Rev. Pharmacol. Toxicol.,
87–595. 2009, 49, 199–221.
5
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016