Chemical Papers
Table 5 IR and NMR data of the β-diketonate Eu(III) complexes
Compound Data
1Ind
IR (KBr), cm−1: 1595–1386 (νdbm), 1168 (νPO). 1H NMR (DMSO-d6, 25 °C), δ: 8.22–7.10 (m, 6H, Ind-H), 7.20 (s, 2H, β-dike-CH),
7.19 (s, 1H, β-dike-CH), 6.82 (t, 6H, JHH =7.3 Hz, β-dike-Ph), 6.67 (t, 1H, JHH =7.3 Hz, β-dike-Ph), 5.73 (d, 12H, JHH =7.3 Hz,
β-dike-Ph), 2.61 (d, 12H, JPH =10.1 Hz, N-Me). 31P{1H} NMR (DMSO-d6, 25 °C), δ: 13.5 (FWHM=30 Hz)
2Ind
IR (KBr), cm−1: 1605–1289 (νtta), 1141 (νPO). 1H NMR (DMSO-d6, 25 °C), δ: 7.87 (d, 1H, JHH =8.3 Hz, Ind-H), 7.59 (d, 1H,
JHH =8.2 Hz, Ind-H), 7.44 (s, 3H, β-dike-thioph), 7.35 (dd, 1H, JHH =3.4 Hz, JPH =2.7 Hz, Ind-H), 7.20 (ddd, 1H, JHH =8.3 Hz,
7.2 Hz, 1.3 Hz, Ind-H), 7.14 (ddd, 1H, JHH =8.2 Hz, 7.2 Hz, 1.1 Hz, Ind-H), 6.68 (ddd, 1H, JHH =3.4 Hz, 0.9 Hz, JPH =2.5 Hz,
Ind-H), 6.51 (s, 3H, β-dike-thioph), 6.35 (s, 3H, β-dike-thioph), 3.79 (s, 3H, β-dike-CH), 2.61 (d, 12H, JPH =10.1 Hz, N-Me).
31P{1H} NMR (DMSO-d6, 25 °C), δ: 13.6 (FWHM=90 Hz). 19F NMR (DMSO-d6, 25 °C), δ: −78.3
1Ph
IR (KBr), cm−1: 1595–1384 (νdbm), 1156 (νPO). 1H NMR (DMSO-d6, 25 °C), δ: 7.85–7.40 (m, 5H, P–Ph), 7.20 (s, 2H, β-dike-CH),
7.19 (s, 1H, β-dike-CH), 6.81 (t, 6H, JHH =7.3 Hz, β-dike-Ph), 6.66 (dd, 12H, JHH =6.3 Hz, JHH =7.3 Hz, β-dike-Ph), 5.71 (d,
12H, JHH =6.3 Hz, β-dike-Ph), 2.56 (d, 12H, JPH =9.7 Hz, N-Me). 31P{1H} NMR (DMSO-d6, 25 °C), δ: 27.5 (FWHM=300 Hz)
2Ph
IR (KBr), cm−1: 1613–1302 (νtta), 1144 (νPO). 1H NMR (DMSO-d6, 25 °C), δ: 7.73 (s, br, 2H, P–Ph), 7.60–7.47 (m, 3H, P-Ph),
7.44 (s, 3H, β-dike-thioph), 6.51 (s, 3H, β-dike-thioph), 6.35 (s, 3H, β-dike-thioph), 3.81 (s, 3H, β-dike-CH), 2.56 (d, 12H,
JPH =8.9 Hz, N-Me). 31P{1H} NMR (DMSO-d6, 25 °C), δ: 28.3 (FWHM=230 Hz). 19F NMR (DMSO-d6, 25 °C), δ: −78.3
11−Naph
IR (KBr), cm−1: 1595–1383 (νdbm), 1157 (νPO). 1H NMR (DMSO-d6, 25 °C), δ: 8.80–7.54 (m, 7H, Naph-H), 7.21 (s, 2H,
β-dike-CH), 7.20 (s, 1H, β-dike-CH), 6.82 (t, 6H, JHH =7.5 Hz, β-dike-Ph), 6.67 (dd, 12H, JHH =7.5 Hz, 7.0 Hz, β-dike-Ph),
5.73 (d, 12H, JHH =7.0 Hz, β-dike-Ph), 2.62 (d, 12H, JPH =9.2 Hz, N-Me). 31P{1H} NMR (DMSO-d6, 25 °C), δ: 28.6
(FWHM=60 Hz)
21−Naph
12−Naph
IR (KBr), cm−1: 1605–1305 (νtta), 1141 (νPO). 8.90–7.53 (m, 7H, Naph-H), 7.44 (s, 3H, β-dike-thioph), 6.51 (s, 3H, β-dike-thioph),
6.35 (s, 3H, β-dike-thioph), 3.80 (s, 3H, β-dike-CH), 2.63 (d, 12H, JPH =9.2 Hz, N-Me). 31P{1H} NMR (DMSO-d6, 25 °C), δ:
28.7 (FWHM=70 Hz). 19F NMR (DMSO-d6, 25 °C), δ: −78.3
IR (KBr), cm−1: 1595–1386 (νdbm), 1158 (νPO). 1H NMR (DMSO-d6, 25 °C), δ: 8.42 (d, br, 1H, JPH =14.1 Hz, Naph-H(1)), 8.18
(d, 1H, JHH =8.1 Hz, Naph-H), 8.09–7.95 (m, 2H, Naph-H), 7.70–7.53 (m, 3H, Naph-H), 7.20 (s, 2H, β-dike-CH), 7.19 (s, 1H,
β-dike-CH), 6.80 (t, 6H, JHH =7.4 Hz, β-dike-Ph), 6.65 (t, 12H, JHH =7.4 Hz, β-dike-Ph), 5.71 (d, 12H, JHH =7.4 Hz, β-dike-Ph),
2.62 (d, 12H, JPH =10.1 Hz, N-Me). 31P{1H} NMR (DMSO-d6, 25 °C), δ: 27.7 (FWHM=280 Hz)
22−Naph
IR (KBr), cm−1: 1608–1305 (νtta), 1140 (νPO). 1H NMR (DMSO-d6, 25 °C), δ: 8.48 (s, br, 1H, Naph-H), 8.05 (d, 1H, JHH =8.1 Hz,
Naph-H), 8.02 (dd, 1H, JHH =8.5 Hz, JPH =3.3 Hz, Naph-H), 7.98 (d, 1H, JHH =8.1 Hz, Naph-H), 7.81 (s, br, 1H, Naph-H), 7.63
(ddd, 1H, JHH =8.1 Hz, 7.0 Hz, 1.4 Hz, Naph-H), 7.58 (ddd, 1H, JHH =8.1 Hz, 7.0 Hz, 1.4 Hz, Naph-H), 7.43 (s, 3H, β-dike-
thioph), 6.51 (s, 3H, β-dike-thioph), 6.34 (s, 3H, β-dike-thioph), 3.81 (s, 3H, β-dike-CH), 2.63 (d, 12H, JPH =10.1 Hz, N-Me).
31P{1H} NMR (DMSO-d6, 25 °C), δ: 28.2 (FWHM=380 Hz). 19F NMR (DMSO-d6, 25 °C), δ: −78.3
17,250 cm−1, and also higher than the Tb(III) 5D4 resonance
level, 20,430 cm−1 (Binnemans 2009). Despite the fact that
(tta). The compounds were obtained by reacting EuCl3 with
the β-diketone, previously deprotonated with potassium
tert-butoxide, and then with the proper phosphoramide or
arylphosphonic diamide ligand. The complexes thus isolated
are stable in air at room temperature. Despite the fact that
we were unable to obtain crystals suitable for X-ray dif-
the desired products (see Table 4). In particular, elemental
analyses agree with the proposed formulations and the molar
for Eu(III) derivatives at room temperature (Cotton 2006).
The IR spectra show, besides the typical vibrations of
the β-diketonate ligands, the νPO stretching in the range
5
the T – D4 energy gap is below the value suggested by
Latva et al. (1997) for an efcient energy transfer, the coor-
nitrate aforded green-emitting TbInd and TbPh complexes
upon excitation with near-UV data, and the PL spectra are
constituted by the 5D4 →7FJ transitions of the metal centre,
R = Ind, Ph) are shown in Fig. 2. On the other hand, the
19,500 cm−1 (Table 3). As a confrmation, attempts to obtain
luminescent Tb(III) derivatives with OP(NMe2)2(1-Naph) or
OP(NMe2)2(2-Naph) were unsuccessful.
1
1168–1140 cm−1. The H NMR spectra in DMSO-d6 of
the 1R complexes exhibit the resonances of the phenyl
substituents at about 6.8, 6.7 and 5.7 ppm, replaced by
three signals at about 7.4, 6.5 and 6.3 ppm in the case of
2R derivatives. The β-dike CH resonances fall at about 7.2
and 3.8 ppm, respectively, for the dbm and tta complexes.
The presence of the –CF3 substituent in the 2R complexes
is confrmed by the 19F NMR singlet at -78.3 ppm. The
phosphoramide and arylphosphonic diamide ligands can be
The sensitization of Eu(III) luminescence by the ligands
OP(NMe2)2Ind, OP(NMe2)2Ph, OP(NMe2)2(1-Naph) and
OP(NMe2)2(2-Naph) was subsequently applied for the
preparation of photoluminescent β-diketonate complexes 1R
and 2R having general formula [Eu(β-dike)3L], where β-dike
is dibenzoylmethanate (dbm) or tenoyltrifuoroacetonate
1 3