European Journal of Medicinal Chemistry p. 34 - 48 (2018)
Update date:2022-08-29
Topics:
Lu, Wenfeng
Zhang, Dihua
Ma, Haikuo
Tian, Sheng
Zheng, Jiyue
Wang, Qin
Luo, Lusong
Zhang, Xiaohu
The Hedgehog (Hh) signaling pathway plays a critical role in controlling patterning, growth and cell migration during embryonic development. Aberrant activation of Hh signaling has been linked to tumorigenesis in various cancers, such as basal cell carcinoma (BCC) and medulloblastoma. As a key member of the Hh pathway, the Smoothened (Smo) receptor, a member of the G protein-coupled receptor (GPCR) family, has emerged as an attractive therapeutic target for the treatment and prevention of human cancers. The recent determination of several crystal structures of Smo in complex with different antagonists offers the possibility to perform structure-based virtual screening for discovering potent Smo antagonists with distinct chemical scaffolds. In this study, based on the two Smo crystal complexes with the best capacity to distinguish the known Smo antagonists from decoys, the molecular docking-based virtual screening was conducted to identify promising Smo antagonists from ChemDiv library. A total of 21 structurally novel and diverse compounds were selected for experimental testing, and six of them exhibited significant inhibitory activity against the Hh pathway activation (IC50 < 10 μM) in a GRE (Gli-responsive element) reporter gene assay. Specifically, the most potent compound (compound 20: 47 nM) showed comparable Hh signaling inhibition to vismodegib (46 nM). Compound 20 was further confirmed to be a potent Smo antagonist in a fluorescence based competitive binding assay. Optimization using substructure searching method led to the discovery of 12 analogues of compound 20 with decent Hh pathway inhibition activity, including four compounds with IC50 lower than 1 μM. The important residues uncovered by binding free energy calculation (MM/GBSA) and binding free energy decomposition were highlighted and discussed. These findings suggest that the novel scaffold afforded by compound 20 can be used as a good starting point for further modification/optimization and the clarified interaction patterns may also guide us to find more potent Smo antagonists.
View MoreNanjing Qirui Material Co., Ltd.
Contact:+86-25-52320053
Address:F4-5, #17 Building, Chuang Yi Yuan, No.6 Guanghua East Street, Nanjing, 210007 P.R.China
Nantong Auxin Electronic Technology Co., LTD
Contact:86-513-88760026
Address:NO.5-1, Aoxin Road, Haian Hi-tech Development Zone, Jiangsu Province, China
Contact:+86-13914766747
Address:Floors 21&22, Jin Cheng Tower, No. 216 Middle Longpan Road, Nanjing
Shanghai Rainbow Chemistry Co., Ltd.
Contact:+86-21-64968086-5815/5812
Address:3rd floor, Building 7, 251 Faladi Road, Zhangjiang Hi-Tech Park, Pudong District, Shanghai, P.R. China
Wuhan Chemchemical Co., Ltd.(expird)
Contact:15973022782
Address:7-5-6218,Incubation Centre,Guandong Industry Park, East Lake High-Tech Development Zone,Wuhan City.
Doi:10.1002/jhet.5570330680
(1996)Doi:10.1021/om990055d
(1999)Doi:10.1002/asia.201901376
(2020)Doi:10.1016/j.jcat.2009.05.012
(2009)Doi:10.1007/BF00988265
(1978)Doi:10.1134/S0020168506020117
(2006)