ORGANIC
LETTERS
2006
Vol. 8, No. 19
4183-4186
Application of Palladium-Catalyzed
Allylic Arylation to the Synthesis of a
(±)-7-Deoxypancratistatin Analogue
Krupa H. Shukla, Debra J. Boehmler, Suzanne Bogacyzk, Bridget R. Duvall,
William A. Peterson, William T. McElroy, and Philip DeShong*
Department of Chemistry and Biochemistry, UniVersity of Maryland,
College Park, Maryland 20742
Received May 2, 2006
ABSTRACT
Palladium-catalyzed coupling of an aryl siloxane and an allylic carbonate proceeded in good yield to give an adduct that was converted to an
analogue of ( )-7-deoxypancratistatin.
±
The natural products pancratistatin (1), 7-deoxypancratistatin
(2), and their analogues have been shown to possess antiviral
and antitumor activity under high dosage conditions (Figure
1).1 The biological activity of these compounds and their
synthetic targets. Controlling the stereochemistry of the dense
array of oxygenated functionality on ring C and the trans-
fused BC-ring junction have proven to be the key elements
in the previous syntheses of this family of lycorane
derivatives.1d,2
We have previously reported the coupling of silicate anions
with allylic esters in the presence of a palladium(0) catalyst
to provide homostyrene derivatives.3 These couplings are
stereospecific, occurring with inversion of configuration and
(2) (a) Danishefsky, S.; Lee, J. Y. J. Am. Chem. Soc. 1989, 111, 4829-
4837. (b) Trost, B. M.; Pulley, S. R. J. Am. Chem. Soc. 1995, 117, 10143-
10144 (c) Gauthier, D. R.; Bender, S. L. Tetrahedron Lett. 1996, 37, 13-
16. (d) Doyle, T. J.; Hendrix, M.; VanDerveer, D.; Javanmard, S.; Haseltine,
J. Tetrahedron 1997, 53, 11153-11170. (e) Magnus, P.; Sebhat, I. K.
Tetrahedron 1998, 54, 15509-15524. (f) Rigby, J. H.; Maharoof, U. S.
M.; Mateo, M. E. J. Am. Chem. Soc. 2000, 122, 6624-6628. (g) Pettit, G.
R.; Melody, N.; Herald, D. L. J. Org. Chem. 2001, 66, 2583-2587. (h)
Kim, S.; Ko, H.; Kim, E.; Kim, D. Org. Lett. 2002, 4, 1343-1345. (i)
Keck, G. E.; McHardy, S. F.; Murry, J. A. J. Org. Chem. 1999, 64, 4465-
4476. (j) Nadein, O. N.; Kornienko, A. Org. Lett. 2004, 6, 831-834. (k)
Pandey, G.; Murugan, A.; Balakrishnan, M.; Chem. Commun. 2002, 624-
625. (l) Grubb, L. M.; Dowdy, A. L.; Blanchette, H. S.; Friestad, G. K.;
Branchaud, B. P. Tetrahedron Lett. 1999, 40, 2691-2694. (m) Mehta, G.;
Mohal, N. Tetrahedron Lett. 1998, 39, 3281-3284. (n) Banwell, M. G.;
Cowden, C. J. Aust. J. Chem. 1994, 47, 2235-2254. (o) Bala´zs, L.; Ka´das,
I.; To¨ke, L. J. Heterocycl. Chem. 1998, 35, 343-348. (p) Angle, S. R.;
Louie, M. S. Tetrahedron Lett. 1993, 34, 4751-4754. (q) Lopes, R. S. C.;
Lopes, C. C.; Heathcock, C. H. Tetrahedron Lett. 1992, 33, 6775-6778.
(r) Clark, R. D.; Souchet, M. Tetrahedron Lett. 1990, 31, 193-196. (s)
Moser, M.; Sun, X.; Hudlicky, T. Org. Lett. 2005, 7, 5669-5672. (t) Rinner,
U.; Hudlicky, T. Synlett. 2005, 3, 365-387 and references therein. (u)
Håkansson, A. E.; Palmelund, A.; Holm, H.; Madsen, R. Chem. Eur. J.
2006, 12, 3243-3253.
Figure 1. Structures of pancratistatin and 7-deoxypancratistatin.
stereochemical complexity have made them challenging
(1) (a) Pettit, G. R.; Gaddamidi, V.; Herald, D. L.; Singh, S. B.; Cragg,
G. M.; Schmidt, J. M.; Boettner, F. E.; Williams, M.; Sagawa, Y. J. Nat.
Prod. 1986, 49, 995-1002. (b) Ghosal, S.; Singh, S.; Kumar, Y.; Srivastava,
R. S. Phytochemistry 1989, 28, 611-613. (c) Gabrielsen, B.; Monath, T.
P.; Huggins, J. W.; Kefauver, D. F.; Pettit, G. R.; Groszek, G.; Hollingshead,
M.; Kirsi, J. J.; Shannon, W. M.; Schubert, E. M.; DaRe, J.; Ugarkar, B.;
Ussery, M. A.; Phelan, M. J. J. Nat. Prod. 1992, 55, 1569-1581. (d)
Hudlicky, T.; Rinner, U.; Gonzalez, D.; Akgun, H.; Schilling, S.; Sien-
galewicz, P.; Martinot, T. A.; Pettit, G. R. J. Org. Chem. 2002, 67, 8726-
8743 and references therein. (e) McNulty, J.; Mao, J.; Gibe, R.; Mo, R.;
Wolf, S.; Pettit, G. R.; Herald, D. L.; Boyd, M. R. Bioorg. Med. Chem.
Lett. 2001, 11, 169-172.
10.1021/ol061070z CCC: $33.50
© 2006 American Chemical Society
Published on Web 08/25/2006