A. Karschin et al. / Electrochimica Acta 70 (2012) 355–359
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.electacta.2012.03.079.
References
[
[
[
[
1] C. Pallotta, N.R. de Tacconi, A.J. Arvia, Electrochim. Acta 26 (1981) 261.
2] F. Villiard, G. Jerkiewicz, Can. J. Chem. 75 (1997) 1656.
3] G. Jerkiewicz, J.J. Borodzinski, Langmuir 9 (1993) 2202.
4] P. Zelenay, G. Horányi, C.K. Rhee, A. Wieckowski, J. Electroanal. Chem. 300
(
1991) 499.
[
[
[
[
[
5] I.R. de Moraes, F.C. Nart, J. Brazil. Chem. Soc. 12 (2001) 138.
6] V. Horvat-Rado sˇ evi c´ , K. Kvastek, J. Electroanal. Chem. 566 (2004) 451.
7] B. Łosiewicz, R. Jurczakowski, A. Lasia, Electrochim. Acta 56 (2011) 5746.
8] Y. Shingaya, M. Ito, J. Electroanal. Chem. 372 (1994) 283.
9] Y. Shingaya, M. Ito, J. Electroanal. Chem. 467 (1999) 299.
[10] M. Wasberg, G. Horányi, J. Electroanal. Chem. 386 (1995) 213.
[11] G. Horányi, M. Wasberg, J. Electroanal. Chem. 404 (1996) 291.
[12] M. Wasberg, J. Bácskai, G. Inzelt, G. Horányi, J. Electroanal. Chem. 418 (1996)
1
95.
13] L. Salgado, G. Trejo, Y. Meas, T. Zayas, J. Solid State Electrochem. 10
2006) 230.
14] R.T.S. Oliveira, M.C. Santos, L.O.S. Bulhões, E.C. Pereira, J. Electroanal. Chem. 569
2004) 233.
[
[
(
Fig. 5. Mass of rhodium in the electrolyte as measured by ICP-MS (data used from
the inset of Fig. 4) for different loadings, normalized to the total mass of rhodium
deposited on the glassy carbon, respectively. The inset shows the % Rh surface area
where the normalization was done to the area after 60 cleaning cycles; data used
from Fig. 4 after every 60 cycles are presented. The upper potential limit was +1.07 V
in all measurements.
(
[
[
[
15] D.A.J. Rand, R. Woods, J. Electroanal. Chem. 35 (1972) 209.
16] M. Łukaszewski, H. Siwek, A. Czerwi n´ ski, Electrochim. Acta 52 (2007) 4560.
17] K. Juodkazis, G. Stalnionis, B. Sˇ ebeka, V. Sˇ ukiené, I. Savickaja, Russ. J. Elec-
trochem. 38 (2002) 1157.
[18] F.H.B. Lima, E.R. Gonzalez, Electrochim. Acta 53 (2008) 2963.
[19] K. Bergamaski, E.R. Gonzalez, F.C. Nart, Electrochim. Acta 53 (2008) 4396.
[20] J.P.I. de Souza, S.L. Queiroz, K. Bergamaski, E.R. Gonzalez, F.C. Nart, J. Phys. Chem.
B 106 (2002) 9825.
[
39] by on-line monitoring of the dissolution of rhodium under both
potentiostatic and potentiodynamic conditions.
[
[
[
21] A. Kowal, M. Li, M. Shao, K. Sasaki, M.B. Vukmirovic, J. Zhang, N.S. Marinkovic,
P. Liu, A.I. Frenkel, R.R. Adzic, Nat. Mater. 8 (2009) 325.
22] V. Kiran, T. Ravikumar, N.T. Kalyanasundaram, S. Krishnamurty, A.K. Shukla, S.
Sampath, J. Electrochem. Soc. 157 (2010) B1201.
23] Y. Shao-Horn, W. Sheng, S. Chen, P. Ferreira, E. Holby, D. Morgan, Top. Catal. 46
(2007) 285.
4
. Conclusions
Rhodium catalysts on glassy carbon electrodes are not stable
[24] J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Nat. Chem. 1 (2009) 37.
[25] K.J.J. Mayrhofer, M. Arenz, Nat. Chem. 1 (2009) 518.
[26] K.J.J. Mayrhofer, J.C. Meier, S.J. Ashton, G.K.H. Wiberg, F. Kraus, M. Hanzlik, M.
Arenz, Electrochem. Commun. 10 (2008) 1144.
during potentiodynamic scans in non-complexing 0.1 M H SO4
2
within the examined potential window of +0.07 to +0.87 VRHE, and
dissolve into the electrolyte during continuous cycling. The mass
loss is dependent on the extent of surface oxide formation and
therefore amplified by increasing the upper potential window up
to +1.27 VRHE for both the polycrystalline rhodium and the rhodium
nanoparticles. It was found that the rate of mass loss is proportional
to the real surface area of rhodium nanoparticles, or in other words,
that the rate of mass loss scales with the loading of the nanopar-
ticles. Due to the fact that the real surface area of nanoparticles
changes during cycling, a straightforward calculation of mass loss
rates from the presented data for the nanoparticulate catalysts is
not feasible.
[27] K.J.J. Mayrhofer, S.J. Ashton, J. Kreuzer, M. Arenz, Int. J. Electrochem. Sci. 4 (2009)
1.
[
28] A.A. Topalov, I. Katsounaros, J.C. Meier, S.O. Klemm, K.J.J. Mayrhofer, Rev. Sci.
Instrum. 82 (2011) 114103.
[29] R. Woods, J. Electroanal. Chem. 49 (1974) 217.
[
[
[
30] D.A.J. Rand, R. Woods, J. Electroanal. Chem. 31 (1971) 29.
31] O.A. Petrii, A.N. Frumkin, Yu G. Kotlov, Sov. Electrochem. 5 (1969) 686.
32] K.J.J. Mayrhofer, D. Strmcnik, B.B. Blizanac, V. Stamenkovic, M. Arenz, N.M.
Markovic, Electrochim. Acta 53 (2008) 3181.
[
33] T.J. Schmidt, H.A. Gasteiger, G.D. Stab, P.M. Urban, D.M. Kolb, R.J. Behm, J. Elec-
trochem. Soc. 145 (1998) 2354.
[
34] J. Glöckler, S. Klützke, W. Meyer-Zaika, A. Reller, F.J. Garcia-Garcia, H.H. Stre-
hblow, P. Keller, E. Rentschler, W. Kläui, Angew. Chem. Int. Ed. 46 (2007) 1164.
35] M. Vukovic, J. Electroanal. Chem. 242 (1988) 97.
[
[
[
36] K. Ohashi, K. Sasaki, S. Nagaura, Bull. Chem. Soc. Jpn. 39 (1966) 2066.
37] N.D. Sverdlova, W. Schäfer, G.N. Mansurov, O.A. Petrii, Russ. J. Electrochem. 31
Acknowledgements
(
1995) 227.
[
[
38] P. Stonehart, H.A. Kozlowska, B.E. Conway, Proc. R. Soc. Lond. A 310 (1969) 541.
39] S.O. Klemm, A.A. Topalov, C. Laska, K.J.J. Mayrhofer, Electrochem. Commun. 13
We thank Andrea Mingers for the measurement of all ICP-MS
data. J.C.M. acknowledges financial support by the Kekulé Fellow-
ship from the Fonds der Chemischen Industrie (FCI).
(
2011) 1533.