Please do not adjust margins
ChemComm
DOI: 10.1039/C6CC08903H
COMMUNICATION
energy transfer (FRET) is retained in the gel (Fig. S19d
Journal Name
†
). TRES
6
7
Q. W. Zhang, D. Li, X. Li, P. B. White, J. Mecinović, X. Ma, H.
Ågren, R. J. M. Nolte, H. Tian and H. Tian, J. Am. Chem. Soc.,
measurement was also substantiated the same. The temporal
evolution of peaks at 500 and 600 nm with a concomitant
2
016, 138, 13541.
Q. Y. Yang and J. M. Lehn, Angew. Chem. Int. Ed., 2014, 53
572.
G. M. Farinola and R. Ragni, Chem. Soc. Rev., 2011, 40, 3467.
,
decrease of emission at 435 nm was observed (Fig. S20†).
4
Solution processable polymers and hybrid materials with
excellent white light emission are important for device
fabrication. Therefore, the thin film was fabricated by coating
the WLE gel on a quartz plate (Fig. 4d). Remarkably, the entire
thin film was highly transparent with a transmittance of 95-
8
9
(a) A. I. Cooper, Adv. Mater., 2009, 21, 1291; (b) T. Ben, H.
Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.
M. Simmons, S. Qiu and G. Zhu, Angew. Chem. Int. Ed., 2009,
48, 9457; (c) W. Lu, J. P. Sculley, D. Yuan, R. Krishna, Z. Wei
and H. Zhou, Angew. Chem. Int. Ed., 2012, 51, 7480; (d) Q.
Chen, D. Liu, M. Luo, L. Feng, Y. Zhao and B. Han, Small,
2014, 10, 308; (e) K. Sakaushi and M. Antonietti, Acc. Chem.
Res., 2015, 48, 1591; (f) A. A. K. Karunathilake, C. M.
Thompson, S. Perananthan, J. P. Ferraris and R. A. Smaldone,
Chem. Commun., 2016, 52, 12881.
97% in 500-800 nm (Fig. S21†) and showed strong white light
emission under the illumination of UV light (Fig. 4d). The
transparent thin film was peeled off from the substrate to
obtain the free-standing WLE thin film (ꢀꢁ = 8%, Fig. 4d). The
CIE coordinates of WLE thin film (0.33, 0.32) is very close to
that of pure white light with CRI value of 82 and CCT 5481 K
1
0 N. B. McKeown and P. M. Budd, Chem. Soc. Rev., 2006, 35
675.
,
promising for applications in warm white light emitting devices 11 (a) P. Kaur, J. T. Hupp and S. T. Nguyen, ACS Catal., 2011,
1,
8
19; (b) C. Yang, B. C. Ma, L. Zhang, S. Lin, S. Ghasimi, K.
(
Fig. S22 and Table S4†).
In summary, TPDC-BZ, a new soluble porous organic
Landfester, K. A. I. Zhang and X. Wang, Angew. Chem. Int.
Ed., 2016, 55, 92025;
2 S. Bandyopadhyay, A. G. Anil, A. James and A. Patra, ACS
Appl. Mater. Interfaces, 2016, 18, 27669.
2
-1
polymer having surface area of 610 m g , high H
3
capacity (143 cm g ) and strong color-tunable emission was
2
uptake
1
-1
fabricated. The highly photoluminescent white light emitting 13 B. C. Ma, S. Ghasimi, K. Landfester, F. Vilela and K. A. I.
Zhang, J. Mater. Chem. A, 2015, 3, 16064.
solution, nanoparticles, gel and transparent thin film were
obtained by encapsulating suitable dyes in the polymer matrix.
The CIE coordinates for the WLE materials were very close to
1
4 (a) L. L. Chen, Y. Honsho, S. Seki and D. Jiang, J. Am. Chem.
Soc., 2010, 132, 6742; (b) K. V. Rao, R. Halder and T. K. Maji
and S. J. George, Phys. Chem. Chem. Phys., 2016, 18, 156.
those of pure white light with high color rendering indices 15 (a) A. Patra, J. Koenen and U. Scherf, Chem. Commun., 2011,
Table S4†). The quantum efficiency of white light emitting
47, 9612; (b) A. Patra and U. Scherf, Chem. - Eur. J., 2012, 18
0074.
(
,
1
nanoparticles was found to be as high as 35%. The underlying
energy transfer phenomenon was elucidated using time-
resolved emission spectra analysis. Compared to existing WLE
systems based on porous solids including MOF and porous
1
6 L. Hao, J. Ning, B. Luo, B. Wang, Y. Zhang, Z. Tang, J. Yang, A.
Thomas and L. Zhi, J. Am. Chem. Soc., 2015, 137, 219
1
7 (a) C. Gu, N. Huang, J. Gao, F. Xu, Y. Xu and D. Jiang, Angew.
Chem. Int. Ed., 2014, 53, 4850; (b) K. Yuan, P. G. Wang, T. Hu,
L. Shi, R. Zeng, M. Förster, T. Pichler, Y. Chen and U. Scherf,
Chem. Mater., 2015, 27, 7403; (c) D. Gopalakrishnan and W.
R. Dichtel, Chem. Mater., 2015, 27, 3813; (d) G. Das, B. P.
Biswal, S. Kandambeth, V. Venkatesh, G. Kaur, M. Addicoat,
polymers (Tables S5 and S6†), TPDC-BZ based hybrid materials
turned out to be very promising in the cost-effective
generation of white light. Moving beyond the gas adsorption
properties, the present study paves the way for novel optical
applications of solution processable porous organic polymers
as potentially useful light emitting materials.
T. Heine, S. Verma and R. Banerjee, Chem. Sci., 2015,
3931;
6,
18 (a) S. Bandyopadhyay, P. Pallavi, A. G. Anil and A. Patra,
Polym. Chem., 2015, 3775; (b) A. Deshmukh, S.
Bandyopadhyay, A. James and A. Patra, J. Mater. Chem. C,
2016, , 4427.
9 (a) P. Zhang, K. Wu, J. Guo and C. Wang, ACS Macro Lett.,
014, , 1139; (b) B. Bonillo, R. S. Sprick and A. I. Cooper,
Chem. Mater., 2016, 28, 3469.
6
,
Financial support from DST (SB/FT/CS-081/2013), New Delhi and infrastructural
support from IISERB are gratefully acknowledged. PP thanks UGC, SB acknowledges
IISERB and JL and AD thank DST-Inspire for fellowship.
4
1
2
3
Notes and references
20 (a) G. Cheng, T. Hasell, A. Trewin, D. J. Adams and A. I.
Cooper, Angew. Chem. Int. Ed., 2012, 51, 12727; (b) A. G.
Slater and A. I. Cooper, Science, 2015, 348, 988.
1
(a) X. Gong, S. Wang, D. Moses, G. C. Bazan and A. J. Heeger,
Adv. Mater., 2005, 17, 2053; (b) N. J. Findlay, J. Bruckbauer,
A. R. Inigo, B. Breig, S. Arumugam, D. J. Wallis, R. W. Martin
and P. J. Skabara, Adv. Mater., 2014, 26, 7290.
2
2
2
1 J. Liu, K. K. Yee, K. K. W. Lo, K. Y. Zhang, W. P. To, C. M. Che
and Z. Xu, J. Am. Chem. Soc., 2014, 136, 2818.
2 G. Cheng, B. Bonillo, R. S. Sprick, D. J. Adams, T. Hasell and A.
I. Cooper, Adv. Funct. Mater., 2014, 24, 5219.
3 J. X. Jiang, F. Su, A. Trewin, C. D. Wood. H. Niu, J. T. A. Jones,
2
3
4
P. Chen, Q. Li, S. Grindy and N. Holten-Andersen J. Am.
Chem. Soc., 2015, 137, 11590.
K. V. Rao, K. K. R. Datta, M. Eswaramoorthy and S. J. George,
Adv. Mater., 2013, 25, 1713.
(a) S. Basak, Y. S. L. V. Narayana, M. Baumgarten, K. Müllen,
and R. Chandrasekar, Macromolecules, 2013, 46, 362; (b) Z.
Wang, A. S. Susha, B. Chen, C. Reckmeier, O. Tomanec, R.
Y. Z. Khimyak and A. I. Cooper, J. Am. Chem. Soc., 2008, 130
710.
,
7
2
2
4 (a) U. Eberle, M. Felderhoff and F. Schüth, Angew. Chem. Int.
Ed., 2009, 48, 6608; (b) J. Germain, J. M. J. Fréchet and F.
Svec, Small, 2009,
5 (a) X. Zhang, S. Rehm, M. M. S. Sempere and F. Würthner,
Nat. Chem., 2009, , 623; (b) C. Vijayakumar, V. K. Praveen
and A. Ajayaghosh, Adv. Mater., 2009, 21, 2059.
5, 1098.
Zboril, H. Zhong and A. L. Rogach, Nanoscale, 2016, 8, 7197.
(a) C. Y. Sun, X. L. Wang, X. Zhang, C. Qin, P. Li, Z. M. Su, D. X.
5
1
Zhu, G. G. Shan, K. Z. Shao, H. Wu and J. Li, Nat. Commun.,
2
013,
4, 2717; (b) Y. Lu and B. Yan, Chem. Commun., 2014,
50, 15443.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins