ACS Catalysis
Page 6 of 8
tivity of Polar Cycloaddition Reactions Between Furan Deriva-
(7) (a) Schiavo, E.; Muñoz-García, A. B.; Barone, V.; Vittadini,
A.; Casarin, M.; Forrer, D.; Pavone, M. Tuning Dispersion Cor-
rection in DFT-D2 for Metal-molecule Interactions: A Tailored
Reparameterization Strategy for The Adsorption of Aromatic
Systems on Ag(1ꢀ1ꢀ1). Chem. Phys. Lett. 2018, 693, 28-33. (b)
Stiefvater, O. L. The Complete Structure of Isoxazole from Natu-
rally Occurring Isotopic Forms by Double Resonance Modulated
Microwave Spectroscopy. J. Chem. Phys. 1975, 63, 2560–2569.
(8) (a) Kumar, S.; Kumar, V.; Singh S. P. in Pericyclic Reac-
tions- A Mechanistic and Problem-Solving Approach, chapter V,
Elsevier Inc. 2016, pp. 231–282. (b) Padwa, A. Generation and
Utilization of Carbonyl Ylides via the Tandem Cyclization-
Cycloaddition Method. Acc. Chem. Res. 1991, 24, 22–28. (c) Pad-
wa, A.; Curtis, E. A. Generation of Carbonyl Ylide Dipoles From
the Rh(II)-Catalyzed Cyclization of α-diazo-β-keto-1,5-diesters.
ARKIVOC 2001, 2, 51–60. (d) Reddy, B. V. S.; Reddy, E. P.; Sri-
dharc, B.; Rao, Y. J. Rhodium-Catalyzed Cycloaddition of Car-
bonyl Ylides for The Synthesis of Spiro[furo[2,3-a]xanthene-2,3′-
indolin]-2′-one Scaffolds. RSC Adv. 2016, 6, 50497–50499. (e)
Iwasawa, N.; Shido, M.; Kusama, H. Generation and Reaction of
tives and Danishefsky’s diene. J. Mol. Struct. THEOCHEM. 2009,
911, 124-131. (d) Wenkert, E.; Piettre, S. R. Reaction of Alpha- and
Beta-acylated Furans with Conjugated Dienes. J. Org. Chem.
1988, 53, 5850-5853. (e) Avalos, M.; Babiano, R.; Cabello, N.;
Cintas, P.; Hursthouse, M. B.; Jimenez, J. L.; Light, M. E.; Pala-
cious, J. C. Thermal and Sonochemical Studies on the
Diels−Alder Cycloadditions of Masked o-Benzoquinones with
Furans:ꢀ New Insights into The Reaction Mechanism. J. Org.
Chem. 2003, 68, 7193-7203. (f) Sugiyama, S.; Tsuda, T.; Mori, A.;
Takeshita, H.; Kodama, M. High-pressure Cycloaddition Reac-
tion of Tropone with Furans. Chem. Lett. 1986, 15, 1315-1318. (g)
Sugiyama, S.; Tsuda, T.; Mori, A.; Takeshita, H.; Kodama, M.
High-Pressure Cycloaddition Reaction of Tropone with Furans.
Bull. Chem. Soc. Jpn. 1987, 60, 3633–3638. (h) Dyker, G.; Hilde-
brandt, D.; Liu, J.; Merz, K. Gold(III) Chloride Catalyzed Domino
Processes with Isobenzopyrylium Cation Intermediates. Angew.
Chem., Int. Ed. 2003, 42, 4399–4402.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4) Recent reviews for isoxazoles, see: (a) Hu, F.; Szostak, M.
Recent Developments in the Synthesis and Reactivity of Isoxa-
zoles: Metal Catalysis and Beyond. Adv. Synth. Catal. 2015, 357,
2583–2614. (b) Vitale, P.; Scilimati, A. Five-membered Ring Het-
erocycles by Reacting Enolates with Dipoles. Curr. Org. Chem.
2013, 17, 1986–2000.
Metal-Containing
Carbonyl
Ylides:ꢀ
Tandem
[3+2]-
Cycloaddition−Carbene Insertion Leading to Novel Polycyclic
Compounds. J. Am. Chem. Soc. 2001, 123, 5814–5815. (f) Jiang, B.;
Zhang, X.; Luo, Z. High Diastereoselectivity in Intermolecular
Carbonyl Ylide Cycloaddition with Aryl Aldehyde Using Methyl
Diazo(trifluoromethyl)acetate. Org. Lett. 2002, 4, 2453–2455. (g)
Hodgson, D. M.; Labande, A. H.; Pierard, F. Y. T. M.; Castro, M.
E. The Scope of Catalytic Enantioselective Tandem Carbonyl
Ylide Formation−Intramolecular [3 + 2] Cycloadditions. J. Org.
Chem. 2003, 68, 6153–6159. (h) Olofson, R. A.; Woodward, R. B.
The Reaction of Isoxazolium Salts with Bases. J. Am. Chem. Soc.
1961, 83, 1007-1009.
(9) (a) Kusama, H.; Iwasawa, N. Cycloaddition Reactions of
Transition Metal-containing Benzopyrylium and Related Zwit-
terionic Intermediates. Chem. Lett. 2006, 35, 1082-1087. (b) Asao,
N. Gold- and Copper-Catalyzed [4+2] Benzannulations between
Enynal or Enynone Units and 2π-Systems. Synlett 2006, 1645-
1656. (c) Hsu, Y.-C.; Ting, C.-M.; Liu, R.-S. Stereocontrolled Syn-
thesis of Complicated Oxacyclic Compounds via Platinum-
Catalyzed [4 + 2]-Cycloadditions and Annulations of Enynals
with Allylic Alcohols. J. Am. Chem. Soc. 2009, 131, 2090–2091. (d)
Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y.
AuCl3-Catalyzed Benzannulation:ꢀ Synthesis of Naphthyl Ketone
Derivatives from o-Alkynylbenzaldehydes with Alkynes. J. Am.
Chem. Soc. 2002, 124, 12650-12651. (e) Umeda, R.; Ikeda, N.; Ike-
shita, M.; Sumino, K.; Nishimura, S.; Nishiyama, Y. Metal-Free
Benzannulation to Synthesis of 2,3-Disubstituted Naphthalenes:
Reaction of 2-(Phenylethynyl)benzaldehyde and Alkynes by
Brønsted Acid. Bull. Chem. Soc. Jpn. 2017, 90, 213-215. (f) Zhang,
J.; Xiao, Y.; Chen, K.; Wu, W.; Jiang, H.; Zhu, S. Zinc‐Catalyzed
Tandem Diels–Alder Reactions of Enynals with Alkenes: Genera-
tion and Trapping of Cyclic o‐Quinodimethanes (o‐QDMs). Adv.
Synth. Catal. 2016, 358, 2684-2691. (g) Asao, N.; Kasahara, T.;
Yamamoto, Y. Functionalized 1,2‐Dihydronaphthalenes from the
(5) For isoxazoles as 2 and 4-donors, see: (a) Turchi, S.; Gi-
omi, D.; Nesi, R. [2+4] Cycloaddition Reactions of 4-Nitro-3-
phenylisoxazole with Carbo- and Heterodienes. Tetrahedron
1995, 51, 7085-7094. (b) Giomi, D.; Nesi, R.; Turchi, S.; Fabriani,
T. Difunctionalized 4-Nitroisoxazoles as Synthetic Equivalents of
the Corresponding 4,5-Didehydroderivative in [2 + 4] Cycloaddi-
tions with 2,3-Dimethylbuta-1,3-diene: Reductive Eliminations of
the Activating Groups from the Primary Adducts. J. Org. Chem.
1994, 59, 6840-6842. (c) Griesbeck, A. G.; franke, M.; Neudorfl, J.;
Kotaka, H. Photocycloaddition of Aromatic and Aliphatic Alde-
hydes to Isoxazoles: Cycloaddition Reactivity and Stability Stud-
ies. Beilstein J. Org. Chem. 2011, 7, 127-134. (d) Nesi, R.; Giomi, D.;
Papaleo, S.; Quartara, L. New Features of Isoxazole Chemistry.
The Reaction of Ethyl 4-nitro-3-phenylisoxazole-5-carboxylate
with 2,3-Dimethylbuta-1,3-diene. J. Chem. Soc., Chem. Commun.
1986, 1536–1537. (e) Sahani, R. L.; Liu, R.–S. Development of
Gold-catalyzed [4+1] and [2+2+1]/[4+2] Annulations Between
Propiolate Derivatives and Isoxazoles. Angew. Chem., Int. Ed.
2017, 56, 1026-1030.
(6) (a) Kumbhare, R. M.; Kosurkar, U. B.; Janaki Ramaiah, M.;
Dadmal, T. L.; Pushpavalli, S. N.; Pal-Bhadra, M. Synthesis and
Biological Evaluation of Novel Triazoles and Isoxazoles Linked 2-
Phenyl Benzothiazole as Potential Anticancer Agents. Bioorg.
Med. Chem. Lett. 2012, 22, 5424–5427. (b) Ratcliffe, P.; Maclean,
J.; Abernnethy, L.; Clatkson, T.; Dempster, M.; Easson, A. M.;
Edwards, D.; Everett, K.; Feilden, H.; Littlewood, P.; McArthur,
D.; McGregor, D.; MeLuskey, H.; Nimz, O.; Nisbet, L. A.; Palin,
R.; Tracey, H.; Walker, G. Identification of Potent, Soluble, and
Orally Active TRPV1 Antagonists. Bioorg. Med. Chem. Lett. 2011,
21, 2559–2563. (c) Liu, J.; Yu, L.-F.; Eaton, J. B.; Caldarone, B.;
Cavino, K.; Ruiz, C.; Terry, M.; Fedolak, A.; Wang, D.; Ghavami,
A.; Lowe, D. A.; Brunner, D.; Lukas, R. J.; Kozikowski, A. P. Dis-
covery of Isoxazole Analogues of Sazetidine-A as Selective α4β2-
Nicotinic Acetylcholine Receptor Partial Agonists for the Treat-
ment of Depression. J. Med. Chem. 2011, 54, 7280–7288. (d) Lee,
Y.-S.; Kim, B. H. Heterocyclic Nucleoside Analogues: Design and
Synthesis of Antiviral, Modified Nucleosides Containing Isoxa-
zole Heterocycles. Bioorg. Med. Chem. Lett. 2002, 12, 1395–1397.
(e) Srivastava, S.; Bajpai, L. K.; Batra, S.; Bhaduri, A. P.; Maikhuri,
J. P.; Gupta, G.; Dhar, J. D. In Search of New Chemical Entities
with Spermicidal and Anti-HIV Activities. Bioorg. Med. Chem.
1999, 7, 2607–2613.
Cu(OTf)2‐Catalyzed
[4+2]
Cycloaddition
of
o‐
Alkynyl(oxo)benzenes with Alkenes. Angew. Chem., Int. Ed.
2003, 42, 3504-3506. (h) Zhu, S.; Hu, L.; Jiang, H. Gold-catalyzed
Tandem Diels–Alder Reactions of Enynals/Enynones With Al-
kenes: Generation and Trapping of Cyclic o-QDMs. Org. Biomol.
Chem. 2014, 12, 4104–4111.
(10) (a) Makar, S.; Saha, T.; Singh, S. K. Naphthalene, a Versa-
tile Platform in Medicinal Chemistry: Sky-high Perspective. Eur.
J. Med. Chem. 2019, 161, 252-276. (b) Roy, S. K.; Tiwari, A.;
Saleem, M.; Jana, C. K. Metal Free Direct C(sp2)–H Arylamina-
tions Using Nitrosoarenes to 2-Hydroxy-di(het)aryl Amines as
Multifunctional Aβ-Aggregation modulators. Chem. Commun.
2018, 54, 14081-14084. (c) Ku, A. F.; Cuny, G. D. Access to 6a-
ACS Paragon Plus Environment