ChemComm
Communication
bimolecular micelle in which the alkyl tails face each other
and the hydrophobic portions are entirely covered by the long
hydrophilic groups.
This work is financially supported by the JST CREST
program; all SAXS measurements were carried out at SPring-8
BL40B2 (2012A1177).
Notes and references
1 (a) M. J. Rosen and J. T. Kunjappu, Surfactants and Interfacial
Phenomena, Wiley & Sons, Inc., 2012; (b) I. W. Hamley, Introduction
to Soft Matter: Polymers, Colloids, Amphiphiles and Liquid Crystals,
Wiley & Sons, Inc., 2000.
2 (a) V. P. Torchilin, Pharm. Res., 2007, 24, 1–16; (b) M. P. Pileni, Nat.
Mater., 2003, 2, 145–150; (c) Z. Dong, W. Yongguo, Y. Yin and J. Liu,
Curr. Opin. Colloid Interface Sci., 2011, 16, 451–458.
3 (a) B. Trappmann, K. Ludwig, M. R. Radowski, A. Shukla, A. Mohr,
H. Rehage, C. Bottcher and R. Haag, J. Am. Chem. Soc., 2010, 132,
¨
11119–11124; (b) C. M. Jager, A. Hirsch, B. Schade, C. Bottcher and
T. Clark, Chem.–Eur. J., 2009, 15, 8586–8592; (c) C. M. Jager,
A. Hirsch, B. Schade, K. Ludwig, C. Bottcher and T. Clark, Langmuir,
2009, 26, 10460–10466; (d) M. Kellermann, W. Bauer, A. Hirsch,
B. Schade, K. Ludwig and C. Bottcher, Angew. Chem., Int. Ed., 2004,
43, 2959–2962; (e) S. Fujii, Y. Sanada, T. Nishimura, I. Akiba,
K. Sakurai, N. Yagi and E. Mylonas, Langmuir, 2012, 28, 3092–3101.
4 (a) O. Hayashida, K. Mizuki, K. Akagi, A. Matsuo, T. Kanamori,
T. Nakai, S. Sando and Y. Aoyama, J. Am. Chem. Soc., 2003, 125, 594–
601; (b) K. Helttunen and P. Shahgaldian, New J. Chem., 2010, 34,
Fig. 4 (a) A dummy atom model derived from the SAXS profile: left, side view;
right, cross section. (b) Rigid body model: left, side view; right, top view. (c) The
dummy atom model (transparent cyan surface representation) is superimposed
on the rigid body model. (d) Comparison of the calculated (red line) and
experimental data (black circle).
¨
2704–2714; (c) S. Hoger, Chem.–Eur. J., 2004, 10, 1320–1329;
(d) C. Larpent, A. Laplace and T. Zemb, Angew. Chem., Int. Ed.,
2004, 43, 3163–3167; (e) M. Lee, S. J. Lee and L. H. Jiang, J. Am. Chem.
Soc., 2004, 126, 12724–12725; ( f ) J.-H. Ryu, N.-K. Oh and M. Lee,
Chem. Commun., 2005, 1770–1772; (g) S. H. Seo, J. Y. Chang and
G. N. Tew, Angew. Chem., Int. Ed., 2006, 45, 7526–7530; (h) C. Suksai,
S. Figueiras Gomez, A. Chhabra, J. Liu, J. N. Skepper, T. Tuntulani
and S. Otto, Langmuir, 2006, 22, 5994–5997; (i) D. Wang, J. F. Hsu,
M. Bagui, V. Dusevich, Y. Wang, Y. Liu, A. J. Holder and Z. Peng,
Tetrahedron Lett., 2009, 50, 2147–2149; ( j) W. Zhang and J. S. Moore,
Angew. Chem., Int. Ed., 2006, 45, 4416–4439; (k) J. K. Kim, E. Lee,
M. C. Kim, E. Sim and M. Lee, J. Am. Chem. Soc., 2009, 131,
17768–17770.
5 (a) T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi and Y. Nakamoto,
J. Am. Chem. Soc., 2008, 130, 5022–5023; (b) T. Ogoshi, J. Inclusion
Phenom. Macrocyclic Chem., 2012, 72, 247–262; (c) M. Xue, Y. Yang,
X. Chi, Z. Zhang and F. Huang, Acc. Chem. Res., 2012, 45, 1294–1308.
6 (a) T. Ogoshi, R. Shiga, M. Hashizume and T. Yamagishi, Chem.
Commun., 2011, 47, 6927–6929; (b) N. L. Strutt, R. S. Forgan,
J. M. Spruell, Y. Y. Botros and J. F. Stoddart, J. Am. Chem. Soc.,
2011, 133, 5668–5671; (c) T. Ogoshi, D. Yamafuji, D. Kotera, T. Aoki,
S. Fujinami and T. Yamagishi, J. Org. Chem., 2012, 77, 11146–11152;
(d) G. Yu, Z. Zhang, C. Han, M. Xue, Q. Zhou and F. Huang, Chem.
Commun., 2012, 48, 2958–2960.
7 (a) W.-Y. Yang, B. Breiner, S. V. Kovalenko, C. Ben, M. Singh,
S. N. LeGrand, Q.-X. A. Sang, G. F. Strouse, J. A. Copland and
I. V. Alabugin, J. Am. Chem. Soc., 2009, 131, 11458–11470;
(b) D. Costa, M. G. A. Miguel and B. R. Lindman, J. Phys. Chem. B,
2007, 111, 8444–8452.
8 O. Glatter and O. Kratky, Small Angle X-ray Scattering, Academic
Press, 1982.
9 T. Cho and V. Hackley, Anal. Bioanal. Chem., 2010, 398, 2003–2018.
10 (a) D. Svergun, J. Appl. Crystallogr., 1992, 25, 495–503; (b) D. I. Svergun,
Biophys. J., 1999, 76, 2879–2886.
model, we found that their structures agreed with each other.
In this model, the hydrophilic groups spread out and are
staggered to reduce the electrostatic repulsion and also com-
pletely cover the hydrophobic portions. A careful comparison of
the rigid body and dummy models shows that the latter (5.3 Â
4.1 nm) is slightly larger than the former (4.8 Â 3.1 nm). This
may be because of the fact that the hydrophilic surface is
surrounded by bound water and the electron density of the
surrounding species (352–408 e nmÀ3) is large compared to that
of the bulk water (344 e nmÀ3).13
According to the generally accepted definition,1a the aggregation
number of micelles lies in the range of 10–100, and the aggregation
number as well as the aggregate shape dynamically fluctuate. In
this respect, our finding is quite unique, and the present case
might be beyond the scope of this definition of micelles. However,
one other dimeric aggregate in aqueous solution is recognized for
cholic acid derivatives14 that assemble into a dimer in which the
hydrophobic steroid backbones are stacked with each other via
strong hydrophobic interactions. These derivatives tend to form
secondary and even larger aggregates in concentrated solutions. In
the present case, the dimer was quite stable in the high concen-
tration range of 0.5–10 mg mlÀ1, plausibly because the hydrophilic
groups cover the hydrophobic surface of the micelle, indicating that
the large size of the hydrophilic groups is essential for producing
such a dimer. Two derivatives of 1 (compounds 9 and 12) with a 11 K. Naruse, K. Eguchi, I. Akiba, K. Sakurai, H. Masunaga, H. Ogawa
and J. S. Fossey, J. Phys. Chem. B, 2009, 113, 10222–10229.
12 M. V. Petoukhov and D. I. Svergun, Biophys. J., 2005, 89, 1237–1250.
13 H. Durchschlag and P. Zipper, Eur. Biophys. J., 2003, 32, 487–502.
shorter hydrophilic group than 1 were synthesized, and it was
found that these compounds did not persist with the same
aggregation number and shape (Fig. S6 and S7, ESI†).
14 (a) N. Funasaki, M. Fukuba, T. Kitagawa, M. Nomura, S. Ishikawa,
S. Hirota and S. Neya, J. Phys. Chem. B, 2003, 108, 438–443;
(b) J. Gyimesi and L. Barcza, J. Inclusion Phenom. Macrocyclic Chem.,
1993, 15, 153–158; (c) K. Kano, S. Tatemoto and S. Hashimoto,
J. Phys. Chem., 1991, 95, 966–970.
In summary, we synthesized a novel pillararene amphiphile
1 and characterized its self-assembly behavior in water. SAXS
and MALS measurements revealed that 1 forms a stable
c
3054 Chem. Commun., 2013, 49, 3052--3054
This journal is The Royal Society of Chemistry 2013