10.1002/chem.201605673
Chemistry - A European Journal
COMMUNICATION
available chalcones and their derivatives via the [1,2]-phospha-
Brook rearrangement using P2-tBu as a superior Brønsted base
catalyst. The resulting anion was subsequently trapped by
various electrophiles, including Michael acceptors, imines and
aldehydes, providing the corresponding adducts in good yields.
Further investigations using this newly-developed methodology
are now in progress, focusing on the development of
enantioselective reactions.
Acknowledgements
Scheme 3. Gram-Scale Reactions.
This research was partially supported by a Grant-in-Aid for
Scientific Research on Innovative Areas “Advanced Molecular
Transformations by Organocatalysts” from MEXT (Japan) and a
Grant-in-Aid for Scientific Research from the JSPS.
direct cleavage of the diethoxyphosphoryl group of 3aa resulted
in the formation of polysubstituted cyclopentene 13 as a single
diastereomer through the intramolecular aldol condensation
(Scheme 4b). The imine-adduct 10 was easily converted to the
corresponding γ-aminoketone 14 in high yield (Scheme 4c). A
transformation based on the cross-coupling reaction was also
possible (Scheme 4d). Thus, a Ni-catalyzed Negishi-type cross-
coupling reaction afforded the arylated product 15 in good yield.
This result suggests that the newly-developed methodology can
be regarded not only as the catalytic generation and addition of
homoenolate equivalents, but also as those of stereo-defined
polysubstituted allyl anions under Brønsted base catalysis.
Keywords: Brønsted base catalysis • homoenolate • umpolung •
[1,2]-phospha-Brook rearrangement • organocatalyst
[1]
[2]
For selected reviews on umpolung reactivity, see: a) B.-T. Gröbel, D.
Seebach, Synthesis 1977, 357-402; b) D. Seebach, Angew. Chem. Int.
Ed. Engl. 1979, 18, 239-336; Angew. Chem. 1979, 91, 259-278; c) R.
Brehme, D. Enders, R. Fernandez, J. M. Lassaletta, Eur. J. Org. Chem.
2007, 5629-2660; d) X. Bugaut, F. Glorius, Chem. Soc. Rev. 2012, 41,
3511-3522; e) J. Streuff, Synthesis 2013, 45, 281-307.
For selected reviews on homoenolates, see: a) N. H. Werstiuk,
Tetrahedron 1983, 39, 205-268; b) D. Hoppe, Angew. Chem. Int. Ed.
Engl. 1984, 23, 932-948; Angew. Chem. 1984, 96, 930-946; c) I.
Kuwajima, E. Nakamura, Top. Curr. Chem. 1990, 155, 1-39; d) I.
Kuwajima, E. Nakamura, In Comprehensive Organic Synthesis, Vol. 2,
Chapter 1.14 (Eds.: B. M. Trost, I. Fleming), Pergmon Press, Oxford,
1991; e) M. T. Crimmins, P. G. Nantermet, Org. Prep. Proced. Int. 1993,
25, 41-48; f) N. Nithiy, D. Rosa, A. Orellana, Synthesis 2013, 45, 3199-
3210.
[3]
[4]
a) S. S. Sohn, E. L. Rosen, J. W. Bode, J. Am. Chem. Soc. 2004, 126,
14370-14371; b) C. Burstein, F. Glorius, Angew. Chem. Int. Ed. 2004,
43, 6205-6208; Angew. Chem. 2004, 116, 6331-6334.
For reviews on homoenolates generated by NHC catalysis, see: a) V.
Nair, S. Vellalath, B. P. Babu, Chem. Soc. Rev. 2008, 37, 2691-2698;
b) V. Nair, R. S. Menon, A. T. Biju, C. R. Sinu, R. R. Paul, A. Jose, V.
Sreekumar, Chem. Soc. Rev. 2011, 40, 5336-5346; c) R. S. Menon, A.
T. Biju, V. Nair, Chem. Soc. Rev. 2015, 44, 5040-5052.
[5]
[6]
For selected reviews on homoenolate equivalents, see: a) D. Hoppe, T.
Hense, Angew. Chem. Int. Ed. Engl. 1997, 36, 2282-2316; Angew.
Chem. 1997, 109, 2376-2410; b) H. Ahlbrecht, U. Beyer, Synthesis
1999, 365-390; c) D. Hoppe, Synthesis 2009, 43-55.
For selected recent examples, see: a) M. A. Horwitz, B. P. Zavesky, J. I.
Martinez-Alvarado, J. S. Johnson, Org. Lett. 2016, 18, 36-39; b) M. A.
Horwitz, N. Tanaka, T. Yokosaka, D. Uraguchi, J. S. Johnson, T. Ooi,
Chem. Sci. 2015, 6, 6086-6090; c) M. Corbett, D. Uraguchi, T. Ooi, J. S.
Johnson, Angew. Chem. Int. Ed. 2012, 51, 4685-4689; Angew. Chem.
2012, 124, 4763-4767; d) A. S. Demir, I. Esiringü, M. Gӧllü, Ӧ. Reis, J.
Org. Chem. 2009, 74, 2197-2199; e) A. S. Demir, S. Eymur, J. Org.
Chem. 2007, 72, 8527-8530; f) C. C. Bausch, J. S. Johnson, Adv.
Synth. Catal. 2005, 347, 1207-1211; g) A. S. Demir, Ӧ. Reis, A. Ç. İğdir,
İ. Esiringü, S. Eymur, J. Org. Chem. 2005, 70, 10584-10587; h) M.
Hayashi, S. Nakamura, Angew. Chem. Int. Ed. 2011, 50, 2249-2252;
Angew. Chem. 2011, 123, 2297-2300; i) L. El Kaïm, L. Gaultier, L.
Grimaud, A. Dos Santos, Synlett 2005, 2335-2336.
Scheme 4. Transformation of Products.
In conclusion, a novel method for the catalytic generation of
homoenolate equivalents and its application to carbon-carbon
bond formation was developed by utilizing the [1,2]-phospha-
Brook rearrangement under Brønsted base catalysis. The α-
oxygenated allyl anion, which can serve as a homoenolate
equivalent, was catalytically generated in situ from readily
[7]
a) A. Kondoh, M. Terada, Org. Lett. 2013, 15, 4568-4571; b) A. Kondoh,
T. Aoki, M. Terada, Org. Lett. 2014, 16, 3528-3531; c) A. Kondoh, M.
Terada, Org. Chem. Front. 2015, 2, 801-805; d) A. Kondoh,T. Aoki, M.
This article is protected by copyright. All rights reserved.