Journal of the American Chemical Society
ARTICLE
change in the loop or lid closing the active site, we propose
the model shown in Scheme 1. Since the reactant state for kcat is the
enzymeꢀsubstrate complex, a reactive conformation of the sub-
strate may not be formed upon binding of substrate to the enzyme
(9) Lee, A. Y.; Karplus, P. A.; Ganem, B.; Clardy, J. J. Am. Chem. Soc.
1995, 117, 3627–3628.
(10) Chook, Y. M.; Gray, J. V.; Ke, H.; Lipscomb, W. N. J. Mol. Biol.
1994, 240, 476–500.
(11) Chook, Y. M.; Ke, H.; Lipscomb, W. N. Proc. Natl. Acad. Sci.
U.S.A. 1993, 90, 8600–8603.
(Eopen unfolded). Instead, the conformer for catalysis (EclosedSfolded) is
S
formed along the reaction coordinate approaching the transition state
(ESq), or in line with classical transition state theory, the reactive
substrate conformation is formed at the transition state. The ordering
of substrate and loop therefore both contribute to the large entropic
penalty for the overall ES to ESq transition. These substrate and
loop ordering steps may be sequential as shown in the scheme, or
may be concerted: closing of the active site loop may force the
substrate into its folded form for catalysis. For the chorismate mutase
reactions with no entropic penalty for the ES to ESq transition,
substrate binding may promote closing of the active site (forming
(12) Ladner, J. E.; Reddy, P.; Davis, A.; Tordova, M.; Howard, A. J.;
Gilliland, G. L. Acta Crystallogr. 2000, D56, 673–683.
(13) Lee, A. Y.; Stewart, J. D.; Clardy, J.; Ganem, B. Chem. Biol. 1995,
2, 195–203.
(14) Gorisch, H. Biochemistry 1978, 17, 3700–3705.
(15) Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos,
J.; Bealer, K.; Madden, T. L. BMC Bioinf. 2009, 10, 421.
(16) Huang, X.; Miller, W. Adv. Appl. Math. 1991, 12, 373–381.
(17) Kast, P.; Asif-Ullah, M.; Hilvert, D. Tetrahedron Lett. 1996,
37, 2691–2694.
(18) Galopin, C. C.; Zhang, S.; Wilson, D. B.; Ganem, B. Tetrahedron
Lett. 1996, 37, 8675–8678.
(19) Schmidt, K.; Leistner, E. Biotech. Bioeng. 1995, 45, 285–291.
(20) Rieger, C. E.; Turnbull, J. L. Prep. Biochem. Biotechnol. 1996,
26, 67–76.
Eclosed folded), and therefore, the entropy change for this transition is
S
approximately zero.
’ AUTHOR INFORMATION
(21) Conners, K. A. Chemical Kinetics. The Study of Reaction Rates in
Solution; Wiley-VCH Publishers: New York, 1990.
(22) DeClue, M. S.; Baldridge, K. K.; Kast, P.; Hilvert, D. J. Am.
Chem. Soc. 2006, 128, 2043–2051.
Corresponding Author
(23) Andrews, P. R.; Smith, G. D.; Young, I. G. Biochemistry 1973,
12, 3492–3498.
’ ACKNOWLEDGMENT
(24) Westheimer, F. H. Adv. Enzymol. Rel. Areas Mol. Biol. 1962,
24, 441–482.
We are grateful to T. C. Gamblin for spectrometer use and
R. L. Schowen for insightful discussions. This publication was
made possible by funds from the Kansas Masonic Cancer
Research Institute, by NIH award number P20 RR016475 from
the INBRE Program of the National Center for Research
Resources, and by NIH award number R01 AI77725 from the
National Institute for Allergy and Infectious Disease.
(25) Gustin, D. J.; Mattei, P.; Kast, P.; Wiest, O.; Lee, L.; Cleland,
W. W.; Hilvert, D. J. Am. Chem. Soc. 1999, 121, 1756–1757.
(26) Wright, S. K.; DeClue, M. S.; Mandal, A.; Lee, L.; Wiest, O.;
Cleland, W. W.; Hilvert, D. J. Am. Chem. Soc. 2005, 127, 12957–12964.
(27) Mattei, P.; Kast, P.; Hilvert, D. Eur. J. Biochem. 1999,
261, 25–32.
(28) Addadi, L.; Jaffe, E. K.; Knowles, J. R. Biochemistry 1983,
22, 4494–4501.
(29) Hur, S.; Bruice, T. C. Proc. Natl. Acad. Sci. U.S.A. 2002,
99, 1176–1181.
(30) Szefczyk, B.; Claeyssens, F.; Mulholland, A. J.; Sokalski, W. A.
Int. J. Quantum Chem. 2007, 107, 2274–2285.
(31) Szefczyk, B.; Mulholland, A. J.; Ranaghan, K. E.; Sokalski, W. A.
J. Am. Chem. Soc. 2004, 126, 16148–16159.
(32) Eletsky, A.; Kienhofer, A.; Hilvert, D.; Pervushin, K. Biochemistry
2005, 44, 6788–6799.
’ ABBREVIATIONS
AroH, chorismate mutase structural family of which BsCM is
a member; AroQ, chorismate mutase structural family of which
EcCM is a member; BsCM, Bacillus subtilis chorismate mutase; CM,
chorismate mutase; EcCM, E. coli chorismate mutase; ES, enzymeꢀ
substrate complex; ESq, transition state of enzyme-catalyzed reaction;
IPL, isochorismate-pyruvate lyase; KpCM, Klebsiella pneumoniae
chorismate mutase; PchB, isochorismate-pyruvate lyase from Pseu-
domonas aeruginosa;Sq, transition state of uncatalyzed reaction;
SaCM, Streptomyces aureofaciens chorismate mutase; TSA, transition
state analogue.
(33) Toth, K.; Amyes, T. L.; Wood, B. M.; Chan, K. K.; Gerlt, J. A.;
Richard, J. P. Biochemistry 2009, 48, 8006–8013.
’ REFERENCES
(1) DeClue, M. S.; Baldridge, K. K.; Kunzler, D. E.; Kast, P.; Hilvert,
D. J. Am. Chem. Soc. 2005, 127, 15002–15003.
(2) Gaille, C.; Kast, P.; Haas, D. J. Biol. Chem. 2002, 277,
21768–21775.
(3) Luo, Q.; Olucha, J.; Lamb, A. L. Biochemistry 2009, 48,
5239–5245.
(4) Gallagher, D. T.; Mayhew, M.; Holden, M. J.; Howard, A.; Kim,
K. J.; Vilker, V. L. Proteins 2001, 44, 304–311.
(5) Nakai, T.; Mizutani, H.; Miyahara, I.; Hirotsu, K.; Takeda, S.;
Jhee, K. H.; Yoshimura, T.; Esaki, N. J. Biochem. 2000, 128, 29–38.
(6) Spraggon, G.; Kim, C.; Nguyen-Huu, X.; Yee, M. C.; Yanofsky,
C.; Mills, S. E. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 6021–6026.
(7) Zaitseva, J.; Lu, J.; Olechoski, K. L.; Lamb, A. L. J. Biol. Chem.
2006, 281, 33441–33449.
(8) Stewart, J.; Wilson, D. B.; Ganem, B. J. Am. Chem. Soc. 1990,
112, 4582–4584.
7233
dx.doi.org/10.1021/ja202091a |J. Am. Chem. Soc. 2011, 133, 7229–7233