H. Katayama et al. / Journal of Organometallic Chemistry 606 (2000) 16–25
23
filtration and dried under vacuum (187 mg, 98%). The
reactions listed in Table 1 were similarly carried out,
except for entries 10 and 11, where the polymerizations
were conducted in neat cyclooctene (8) or dicyclopenta-
diene (9) (2.0 ml) in the presence of 2a (10.0 mg, 0.0174
mmol). The polymers thus obtained were characterized
by IR and NMR spectroscopy and GPC analysis, ex-
cept for poly(9), whose characterizations were infeasible
due to its insolubility. The spectroscopic and analytical
was added to a solution of 2a (18.4 mg, 0.0320 mmol)
and phenyl vinyl sulfide (21.8 mg, 0.160 mmol) in
CH Cl (14 ml) at r.t. The reaction mixture was stirred
2
2
at r.t. for 2 h. GLC analysis revealed the full consump-
tion of 4. The resulting reddish brown solution was
poured into a vigorously stirred MeOH (ca. 50 ml)
containing 0.1% BHT to give white suspension. A part
of the solvent was removed by rotary evaporator, and
the white precipitate was collected by filtration, washed
with MeOH, and dried under vacuum (127 mg, 84%).
The reactions listed in Table 2 were similarly carried
out. The polymers thus obtained were characterized by
IR and NMR spectroscopy and GPC analysis. The
spectroscopic data are as follows.
data are as follows.
1
poly(4): H-NMR (CDCl , 21°C) l 5.34 (dd, J=5.0,
3
2
.4 Hz, ꢀCH of trans-polymer), 5.20 (dd, J=5.4, 2.0
Hz, ꢀCH of cis-polymer), 2.45–2.32, 1.91–1.70, 1.44–
13
1
1
2
4
2
.24, 1.12–0.97 (each m, CH2). C{ H}-NMR (CDCl ,
3
1°C) l 133.9, 133.0 (each s, ꢀCH), 43.4, 43.1, 42.1,
1.4, 38.4, 32.3, 32.2 (each s, CH and CH ). IR (KBr)
2
−
1
944, 2864, 1445, 1034, 966, 746 cm . Anal. Calc. for
C H : C, 89.30; H, 10.70. Found: C, 88.89; H, 10.63%.
7
10
1
poly(5): H-NMR (CDCl , 18°C) l 5.52 (br, ꢀCH),
3
3
.63 (m, CO Me), 3.09, 2.85 (each br, CH), 1.94 (br,
2
1
1
3
1
Y=OEt: H-NMR (CDCl , 19°C) l 5.86 (d, J=9.0
CH2). C{ H}-NMR (CDCl , 21°C) l 172.5 (br,
3
3
k
c
Hz, H ), 5.80 (ddd, J=17.5, 10.0, 7.5 Hz, H ), 5.34 (dd,
CO Me), 132.4–130.2 (m, ꢀCH), 51.2, 44.9, 44.5, 44.2,
2
d
i
J=5.0, 2.4 Hz, H ꢂH of trans-polymer), 5.20 (dd,
3
2
9.4, 39.0, 38.5, 37.9 (each br, CH and CH ). IR (KBr)
952, 1737, 1438, 1388, 1200, 807 cm . Anal. Calc. for
2
d
i
−
1
J=5.6, 1.7 Hz, H ꢂH of cis-polymer), 4.95 (dd, J=
b a
1
(
7.5, 2.1 Hz, H ), 4.86 (dd, J=10.0, 2.1 Hz, H ), 4.31
C H O : C, 62.85; H, 6.71. Found: C, 62.29; H,
1
1
14
4
j
dd, J=9.0, 7.0 Hz, H ), 3.77 (q, J=7.5 Hz, CH CH ),
6
.77%.
2 3
1
1.24 (t, J=7.5 Hz, CH CH ), 2.82–2.73, 2.50–2.35,
poly(6): H-NMR (CDCl , 18°C) l 5.39 (br, ꢀCH),
.45–3.28 (m, CH OCH ), 2.98, 2.68, 2.28, 1.94, 1.42
2 3
3
1
.92–1.69, 1.43–1.30, 1.11–0.98 (each m, CH and
3
2
3
1
3
1
(
each m, CH and CH2). C{ H}-NMR (CDCl , 21°C)
CH2).
3
1
Y=OAc: H-NMR (CDCl , 19°C) l 6.96 (d, J=
l
132.2–131.6 (m, ꢀCH), 71.3, 71.1 (each s,
2
3
k
k
1
7.8 Hz, trans-H ), 6.94 (d, J=6.4 Hz, cis-H ), 5.80
CH OCH ), 58.6 (s, CH OCH ), 45.7, 44.1, 39.5, 38.9,
3
1
3
2
3
c
(
ddd, J=17.2, 9.6, 7.2 Hz, H ), 5.34 (dd, J=4.4, 2.0
8.1 (each s, CH and CH ). IR (KBr) 2976, 2870, 2806,
2
450, 1390, 1197, 1107, 957, 795 cm . Anal. Calc. for
d
i
−
1
Hz, H –H of trans-polymer), 5.20 (dd, J=6.4, 1.2 Hz,
d
i
b
H –H of cis-polymer), 4.96 (d, J=17.2 Hz, H ), 4.86
C H O : C, 72.49; H, 9.95. Found: C, 72.15; H,
1
1
18
2
a
j
(
2
d, J=9.6 Hz, H ), 4.82 (dd, J=9.6, 6.4 Hz, cis-H ),
.85–2.70, 2.55–2.35, 1.89–1.70, 1.43–1.27, 1.12–1.01
(each m, CH and CH ), 2.14 (s, OCOCH of Z isomer),
2.11 (s, OCOCH of E isomer). IR (KBr) 1760 (wCꢀO
9.95%.
1
poly(7): H-NMR (CDCl , 21°C) l 5.88 (br), 5.60
3
1
3
1
(
br), 5.06 (br), 4.68 (br), 3.68 (s), 3.08 (br). C{ H}-
2
3
NMR (CDCl , 21°C) l 170.9, 170.7 (each s, CO Me),
3
)
3
2
−
1
1
5
1
32.3, 132.1, 131.2, 130.8 (each s, ꢀCH), 80.4, 77.2,
3.2, 52.8, 52.5, 52.3, 52.2. IR (KBr) 3002, 2954, 1729,
436, 1209, 1010, 872, 736, 686 cm . Anal. Calc. for
cm
Y=SPh: H-NMR (CDCl
7.21–7.16 (each m, Ph), 6.11 (dd, J=14.3, 0.8 Hz,
.
1
, 19°C) l 7.34–7.29,
3
−
1
k
k
C H O : C, 56.60; H, 5.70. Found: C, 56.15; H,
trans-H ), 6.10 (dd, J=10.2, 1.2 Hz, cis-H ), 5.98 (dd,
J=15.2, 8.0 Hz, trans-H ), 5.80 (ddd, J=16.8, 10.0,
7.2 Hz, H ), 5.79 (dd, J=9.2, 9.0 Hz, cis-H ), 5.34 (dd,
1
0
12
5
j
5
.76%.
poly(8): H-NMR (CDCl , 19°C): l 5.40 (br, ꢀCH),
1
c
j
3
1
3
1
d
i
2
.00 (br, ꢀCHCH ꢂ), 1.30 (br, CH ). C{ H}-NMR
J=4.4, 2.0 Hz, H ꢂH of trans-polymer), 5.20 (dd,
d i
2
2
(
2
CDCl , 21°C) l 130.3, 129.9 (each s, ꢀCH), 32.6, 29.8,
J=6.4, 2.0 Hz, H ꢂH of cis-polymer), 4.98 (ddd,
3
b
9.6, 29.2, 29.1, 27.2 (each s, CH ). IR (KBr) 3004,
923, 2852, 1463, 1052, 966, 808, 724 cm . Anal. Calc.
J=14.8, 2.0, 1.2 Hz, H ), 4.86 (ddd, J=10.4, 2.0, 1.2
2
−
1
a
2
Hz, H ), 2.80–2.76, 2.45–2.41, 1.95–1.55, 1.46–1.23,
for C H : C, 87.19; H, 12.81. Found: C, 86,71; H,
1.06–1.01 (each m, CH and CH ).
2
8
14
1
12.99%.
Y=N-pyrrolidinonyl: H-NMR (CDCl , 19°C) l
3
k
6
.87 (d, J=14.4 Hz, H ), 5.80 (ddd, J=17.2, 10.0, 7.6
c
d
i
3.3. ROMP of norbornene in the presence of 6inylic
Hz, H ), 5.34 (dd, J=4.4, 2.0 Hz, H ꢂH of trans-poly-
d i
compounds
mer), 5.20 (dd, J=5.6, 1.6 Hz, H ꢂH of cis-polymer),
b
4
.97 (d, J=17.2 Hz, H ), 4.90 (dd, J=14.4, 6.0 Hz,
j
a
A typical procedure (entry 3 in Table 2) is as follows.
H ), 4.87 (d, J=10.0 Hz, H ), 3.49 (t, J=7.2 Hz, CH
2
A solution of 4 (151 mg, 1.60 mmol) in CH Cl (2.3 ml)
of pyrrolidinone ring), 2.08 (m, CH of pyrrolidinone
2
2
2