62
G. Gambaretto et al. / Journal of Fluorine Chemistry 121 (2003) 57–63
3.3.4. 3-Perfluoro-n-octyl-l-propene,
previously treated with powdered zinc (3 g) to remove traces
of acetic acid. The resulting mixture was heated at 60–65 8C
for 4 h, during which time powdered zinc (27.5 g, 0.42 mol)
was added in small portions. The solid product was sepa-
rated from acetic anhydride by decantation. The excess zinc
remaining in the solid product was destroyed by heating the
solid to 80 8C and continuously adding a solution of 10%
aqueous HCl. This solution was then cooled and the desired
product was separated from the aqueous phase by decanta-
tion and was then purified by distillation at 170–175 8C/
1 Torr. Yield 205 g, 37%. Calcd. for C30H10F52: C 26.53, H
0.74; Found: C 26.37, H 0.70. FAB/MS (m-nitrobenzylal-
cohol) (m/z, rel. ab. %): 1511 ([M þ NBA]ꢃþ, 30%); 1471
F(CF2)8CH2CH¼CH2 (2b)
The synthesis was performed according to the procedure
described for 2a starting from F(CF2)8CH2CHICH2OH
(657 g, 1.09 mol), aqueous solution of acetic acid (200 g)
and zinc (71.2 g, 1.08 mol).The product was distilled (60–
63 8C/20 Torr).Yield 280 g, 56%.
MS m/z (rel. ab. %): 461 ([M þ H]þ, 1%); 460 ([M]þ,
10%); 395 ([M À C2H3F2]þ, 15%); 91 ([C4H5F2]þ, 95%); 69
([CF3]þ, 30%); 41 ([C3H5]þ, 100%). FTIR (nujol): nCF
1115–1348 cmÀ1, nC¼C 1650 cmÀ1. 1H NMR (CD3COCD3):
d 3.05 (dt, 3JHH 7.0, 3JHF 19.1, CH2); 5.84 (m, CH¼); 5.40 (m,
CH2¼). 19F NMR (CD3COCD3): d À80.99 (t, 3JFF 9, CF3);
À112.7, À113.9 (m, CF2CH2); À121.6, À122.4, À123.2,
À126.0 (m, CF2). 13C NMR (CD3COCD3): d 37.05 (t,
2JCF 22.3, CH2CF2), 126.97 (CH¼), 123.75 (CH2¼), 113–
121 (m, CF).
([1511-2HF]ꢃþ, 40%). FTIR: nCF 1122–1246 cmÀ1, br. H
1
NMR (CD3COCD3, perfluorodecaline): d 0.93 (m, CH2); d
1.85 (m, CH). 13C NMR (CD3COCD3, freon 113): d 28.24
2
(s, CH), d 31.40 (t, JCF 21.6, CH2CF2), 106–124 (m, CF).
3.3.5. 1,3-Perfluoro-n-hexyl-2-iodo-propane,
F(CF2)6CH2CHICH2(CF2)6F (3a)
3.3.8. 1,1,2,2-Tetrakis(perfluorooctyl-methylene)ethane
{[F(CF2)8CH2]2CH}2 (TK8)
F(CF2)6CH2CH¼CH2 (201 g, 0.56 mol) was mixed with
F(CF2)6I (256 g, 0.58 mol) in a 1 l four necked flask equipped
with a condenser, mechanical stirrer and a thermometer. The
mixture was heated under nitrogen to 85 8C and AIBN
was added (5.1 g, 0.03 mol), then the solution was heated
at 85 8C for 20 h, with the further addition of AIBN during
the reaction time (ca. 1 g every 4 h). The product was purified
by distillation (100–107 8C/1 Torr). Yield 440 g (97%).
MS m/z (rel. ab. %): 679 ([M À I]þ, 4%); 659 ([M À I À
HF]þ, 12%); 345 ([C8H2F13]þ, 17%); 295 ([C7H2F11]þ, 36%);
169 ([C3F7]þ, 10%); 119 ([C2F5]þ, 27%); 69 ([CF3]þ, 80%).
FTIR (nujol): nCF 1236,br. 1H NMR (CD2Cl2): d 4.53 (q, 3JHH
6.6, CH); 2.97 (m, CH2). 19F NMR (CD2Cl2): d À81.2 (tt, 3JFF
TK8 was prepared according to the procedure described
for TK6, starting from F(CF2)8CH2CHICH2(CF2)8F (490 g,
0.49 mol), zinc (32 g,0.49 mol) and acetic anhydride
(500 ml). The product was separated from the aqueous phase
by decantation and purified by distillation at 213–217 8C/
1 Torr. Yield 214 g (25%). FAB/MS (m-nitrobenzylalcohol)
(m/z, rel. ab. %): 1758 ([M]ꢃþ, 30%). Calcd. for C38H10F68:
C 25.96, H 0.57; Found: C 26.61, H 0.52. FTIR: nCF 1100–
1250 cmÀ1, br. 1H NMR (CD3COCD3, perfluorodecaline): d
0.95 (m, CH2); d 1.66 (m, CH). 13C NMR (CD3COCD3,
CFC 113): d 29.33 (s, CH), d 31.27 (t, 2JCF 20.9, CH2CF2),
100–130 (m, CF).
4
9.7, JFF 2.2, CF3); À113.6 (m, CF2CH2); À121.9, À123.1,
À123.7, À126.3 (m, CF2). 13C NMR (CD3COCD3): d 0.93
References
2
(CHI), 42.38 (t, JCF 20.3, CH2CF2), 104–126 (m, CF).
[1] (a) T.W. Del Pesco, Handbook of Lubrication and Tribology, CRC
Press, Boca Raton, FL, 1994, p. 287;
3.3.6. 1,3-Perfluoro-n-octyl-2-iodo-propane,
F(CF2)8CH2CHICH2(CF2)8F (3b)
(b) D. Myers, Surfactant Science and Technology, VCH, Weinheim,
1988.
This compound was prepared according to the procedure
described for 3a starting from F(CF2)8CH2–CH¼CH2
(280 g, 0.61 mol), F(CF2)8I (365.6 g, 0.67 mol) and AIBN
(10 g, 0.06 mol). 3b was distilled at 128–134 8C/7 Torr.
Yield 490 g (80%).
[2] A. Karydas, US Patent 5 914 298 (1999).
[3] E. Traverso, et al., US Patent 5 202 041 (1993).
[4] G.P. Gambaretto, US Patent 4 724 093 (1988).
[5] G. Albanesi, Chim. Ind. (Milan) 77 (1995) 377.
[6] G. Albanesi, Chim. Ind. (Milan) 80 (1998) 749.
[7] K. von Werner, J. Fluorine Chem. 28 (1985) 229.
[8] M. Kuroboshi, T. Ishihara, J. Fluorine Chem. 39 (2) (1988) 299.
[9] A. Probst, K. Raab, K. Ulm, K. Werner, J. Fluorine Chem. 37 (1987)
223.
MS m/z (rel. ab. %): 779 ([M À I]þ, 5%); 759 ([M À I À
HF]þ, 10%); 119 ([C2F5]þ, 30%); 69 ([CF3]þ, 80%). FTIR
n
CF 1241 cmÀ1, br. 1H NMR (CD3COCD3): d 4.66 (q, 3JHH
[10] E. Traverso, Eur. Patent Appl. 0 444 752 A1, 1991.
[11] E.S. Lo, Germ. Offen. 2 047 475, 1971.
[12] T. Enokida, G. Katu, Jpn. Kokai, Tokyo Koho JP 07 48 294, 1995.
[13] T. Durenroth, R.A. Falk, J. Haan, Eur. Patent Appl. EP 690 027,
1996.
5.6, CH); 3.24 (m, CH2). 19F NMR (CD2Cl2): d À81.0 (t,
3JFF 10.0, CF3); À113.6 (m, CF2CH2); À121.5, À122.5,
À123.6, À126.0 (m, CF2). 13C NMR (CD3COCD3): d 0.94
~
2
(CHI), 42.22 (t, JCF 20, CH2CF2), 106–124 (m, CF).
[14] A.L. Henne, J. Am. Chem. Soc. 57 (1953) 5750.
[15] N.O. Brace, J. Org. Chem. 28 (1963) 3093.
[16] N.O. Brace, J. Org. Chem. 27 (1962) 3033.
[17] N.O. Brace, J. Org. Chem. 27 (1962) 4491.
[18] N.O. Brace, US Patent 3 145 222 (1964).
[19] N.O. Brace, J. Fluorine Chem. 20 (1982) 213.
3.3.7. 1,1,2,2-Tetrakis(perfluorohexyl-methylene)ethane
{[F(CF2)6CH2]2CH}2 (TK6)
F(CF2)6CH2CHICH2(CF2)6F (320 g, 0.40 mol) was
mixed with acetic anhydride (580 ml) which had been