View Article Online
2
3
4
5
(a) R.R. Schmidt, Angew. Chem., Int. Ed. Engl., 1986, 5, 212; (b) W.
Kinzy and R. R. Schmidt, Adv. Carbohydr. Chem. Biochem., 1994, 50,
1.
(a) D. Kahne, S. Walker, Y. Cheng and D. van Engen, J. Am. Chem.
Soc., 1989, 111, 6881; (b) L. Yan and D. Kahne, J. Am. Chem. Soc.,
2
1
996, 118, 9239.
(a) D. R. Mootoo, V. Date and B. Fraser-Reid, J. Am. Chem. Soc., 1988,
10, 2662; (b) A. J. Ratcliffe, P. Konradsson and B. Fraser-Reid, J. Am.
1
Chem. Soc., 1990, 112, 5665.
(a) W. Koenigs and E. Knorr, Chem. Ber., 1901, 34, 957; (b) B.
Helferich and K. F. Wedeneyer, Liebigs Ann. Chem., 1949, 563, 139; (c)
R. B. Conrow and S. Bernstein, J. Org. Chem., 1971, 36, 863; (d)
Summarised by H. Paulsen, in Modern Methods in Carbohydrate
Synthesis, S. H. Khan and R. A. O’Neill, eds., Harwood Academic
Publishers, The Netherlands, 1996, pp. 1–19.
Scheme 1
6 K. P. R. Kartha, M. Aloui and R. A. Field, Tetrahedron Lett., 1996, 37,
807.
K. P. R. Kartha, T. S. Karkkainen, S. J. Marsh and R. A. Field, Synlett.,
001, 260.
For example P. M. Collins and R. J. Ferrier, Monosaccharides, J. Wiley,
Chichester, 1995, p. 163.
8
7
8
9
2
The conformations of the C(2) and C(5)/C(6) substituents,
however, differ between 1 and 3, probably owing to the relative
sizes of the Br/I atoms and packing effects. The H NMR
spectra of the two halosugars also show some differences. Both
the H(2)–H(3) axial–axial and H(1)–H(2) axial–equatorial
coupling constants in 1, respectively 9.8 and 4.4 Hz,17 fall
within the typical pyranose range, but very interestingly the
chemical shift of the 2-H is significantly lower in 1 than in 3,
whereas the chemical shift of the 1-H is higher in 1 than in 3. A
1
Especially:(a) A. Klemer and M. Bieber, Liebigs Ann. Chem., 1984,
1
052; (b) B. Ernst and T. Winkler, Tetrahedron Lett., 1989, 30, 3081; (c)
U. Schmid and H. Waldmann, Tetrahedron Lett., 1996, 37, 3837; (d) S.
M. Chervin, P. Abada and M. Koreeda, Org. Lett., 2000, 2, 369.
10 J. Gervay and M. J. Hadd, J. Org. Chem., 1997, 62, 6961.
11 (a) J. Gervay, T. N. Nguyen and M. J. Hadd, Carbohydr. Res., 1997,
3
3
00, 119; (b) S. N. Lam and J. Gervay-Hague, Carbohydr. Res., 2002,
37, 1953; (c) J. Gervay, Glycosyl Iodides in Organic Synthesis, in
similar trend has been noted before in anomeric iodosugars of
the galactose series:15 moreover the difference in chemical
Organic Synthesis: Theory and Applications, JAI Press Inc., New York,
998, vol. 4, pp. 121–153.
1
shifts of the anomeric protons of 1 and 3, at 0.36 ppm, is
comparable to that between the anomeric protons of the parent
-bromo- and 2-iodo-tetrahydropyrans (0.46 ppm) as given by
1
1
2 J. Vlahov and G. Snatzke, Liebigs Ann. Chem., 1983, 570.
3 J. R. Ferguson, J. L. Law, F. Scheinmann and A. V. Stachulski, British
Patent Application, No. 9914382.8, to Ultrafine UFC Ltd., July 1999.
2
1
8
Anderson and Sepp.
14 Cf. the corresponding (and much less stable) triacetate: R. T. Brown, F.
Scheinmann and A. V. Stachulski, J. Chem. Res. (S), 1997, 370.
15 K. P. R. Kartha and R. A. Field, Carbohydr. Lett., 1998, 3, 179.
16 T.-L. Ho and G. A. Olah, Synthesis, 1977, 417.
1
Because of the continuing interest in morphine-6-glucur-
onide 4 as an analgesic more potent and better tolerated than
the glycosyl donor ability of 1 was studied
in this context (Scheme 1). In a model experiment, 1 (1 eq.)
morphine itself,1
3,19
1
7 Full characterisation was obtained for 1. H NMR of 1: d
H
(400 MHz,
C), 3.74 (3 H, s, CH O),
.27 (1 H, dd, J = 9.8 and 4.4 Hz, 2-H), 4.37 (1 H, d, J = 10.3 Hz, 5-H),
.31 (1 H, t, 3-H), 5.61 (1 H, t, 4-H) and 7.01 (1 H, d, J = 4.4 Hz, 1-H).
CDCl
3
) 1.13, 1.18 and 1.20 (27 H, 3 s, 3 3 Me
3
3
proved to be a suitable donor for glycosidation of 2-phenyl-
4
5
ethanol (1.5 eq.) using ZnCl
2
(1.1 eq.) as catalyst in 1,2-di-
chloroethane (20 h, 20 °C); glucuronate ester 520 was isolated in
13
C 3
C NMR: d (100 MHz, CDCl ) 27.42, 27.51, 38.95, 39.12, 39.17,
5
6
6% yield (unoptimised). Reaction of 3-O-pivaloyl morphine
with 1 (1.1 eq.) mediated by I
catalyst afforded glucuronate ester 7 (55% after chromatog-
5
3.34, 68.31, 70.37, 70.94, 71.70, 75.49, 167.04, 176.99 and 177.30.
1
9c
2
(2.5 eq.) with no other
+
9
Found: C, 46.4; H, 6.25; MNa , 593.1230. C22H35IO requires C, 46.3;
H, 6.20%; C22H35IO Na requires m/z, 593.1224. Crystal data:
9
1
3,21
raphy) after 60 h.
The yield compares well to that obtained
C22H35IO , M = 570.40, orthorhombic, space group P2 2 2 , a =
9
w
1 1 1
using the trichloroacetimidate method2 and the product was
identical to 7 prepared in that way; moreover only a 10% excess
of 1 is required. By contrast, reaction of 6 with the bromosugar
2
9.6982(16), b = 11.4712(19), c = 22.658(4) Å, T = 100 K, U =
3
21
2
520.7(7) Å , Z = 4, m(Mo-Ka) = 1.317 mm , 4595 reflections
2
3
2
collected, 3911 unique.
Rint = 0.0413, final wR(F ) = 0.0525 (all
24
data). Absolute structure Flack = 0.006(16). CCDC reference number
05813. See http://www.rsc.org/suppdata/cc/b3/b302629a/ for crys-
tallographic data in CIF or other electronic format.
H NMR of 3: d (400 MHz, CDCl ) 1.14, 1.17 and 1.19 (27 H, 3 s, 3 3
Me C), 3.74 (3 H, s, CH O), 4.59 (1 H, d, J = 10.3 Hz, 5-H), 4.85 (1
3
(which afforded typically 80–85% yields in glycosidation of
2
20
primary alcohol acceptors) under comparable conditions gave
only a 20% yield of 7. Finally, base-catalysed hydrolysis of 7
led cleanly to morphine-6-glucuronide 41 in 85% yield.
In summary, we have characterised a highly stable ‘dis-
armed’ glycosyl iodide, namely 1, and shown it to possess a
typical chair structure by X-ray diffraction. This represents the
first crystal structure for this class of molecule. Furthermore, we
have shown glycosyl iodide 1 to be an effective glycosyl donor
in reactions with both a primary and a secondary alcohol
acceptor.
1
H
3
9c
3
3
H, dd, J = 9.9 and 4.1 Hz, 2-H), 5.28 (1 H, t, 3-H), 5.69 (1 H, t, 4-H)
and 6.66 (1 H, d, J = 4.1 Hz, 1-H)..
18 C. B. Anderson and D. T. Sepp, J. Org. Chem., 1967, 32, 607.
1
9 (a) R. J Osborne, S. P. Joel, D. Trew and M. Slevin, Lancet, 1988, i: 828;
b) R. J. Osborne, P. I. Thompson, S. P. Joel, D. Trew, N. Patel and M.
(
Slevin, Br. J. Clin. Pharmacol., 1992, 34, 130; (c) F. Scheinmann, K. W
Lumbard, R. T. Brown and S. P. Mayalarp, International Patent, WO
9
3/3051, 1993, to Ultrafine UFC Ltd.
0 A. V. Stachulski, Tetrahedron Lett., 2001, 42, 6611.
1 It was known that ZnBr in dichloromethane at reflux was a suitable
We are grateful to the EPSRC and Astra Zeneca PLC for an
industrial CASE studentship (to J. A. C.) and to Professor A. J.
Kirby (University of Cambridge) for valuable comments.
2
2
2
catalyst for the glucuronidation of 3-acylmorphines using a glycosyl
bromide: I. Rukhman, G. Nisnevich and A. L. Gutman, Tetrahedron,
2
001, 57, 1083.
2
2
2 R. T. Brown, N. E. Carter, F. Scheinmann and K. W. Lumbard,
Tetrahedron Lett., 1995, 36, 8661.
3 G. M. Sheldrick, Shelx97, Crystal structure determination program,
University of Gottingen, Gottingen, Germany, 1997.
Notes and references
1
(a) P. Fuegedi, P. J. Garegg, H. Loenn and T. Norberg, Glycoconjugate
J., 1987, 4, 97; (b) F. Dasgupta and P. J. Garegg, Carbohydr. Res., 1988,
24 H. D. Flack, Acta Crystallogr. Sect. A Fundam. Crystallogr., 1983, 39,
177, C13.
876.
CHEM. COMMUN., 2003, 1266–1267
1267