Journal of the American Chemical Society
Article
hippocampal tissues. Anal. Chem. 2018, 90, 9347−9352. (b) Li, X.;
Tao, R.-R.; Hong, L.-J.; Cheng, J.; Jiang, Q.; Lu, Y.-M.; Liao, M.-H.;
Ye, W.-F.; Lu, N.-N.; Han, F.; Hu, Y.-Z.; Hu, Y.-H. Visualizing
peroxynitrite fluxes in endothelial cells reveals the dynamic
progression of brain vascular injury. J. Am. Chem. Soc. 2015, 137,
12296−12303. (c) Xie, X.; Tang, F.; Liu, G.; Li, Y.; Su, X.; Jiao, X.;
Wang, X.; Tang, B. Mitochondrial peroxynitrite mediation of
anthracycline-induced cardiotoxicity as visualized by a two-photon
near-infrared fluorescent probe. Anal. Chem. 2018, 90, 11629−11635.
(d) Sun, C.; Du, W.; Wang, P.; Wu, Y.; Wang, B.; Wang, J.; Xie, W. A
novel mitochondria-targeted two-photon fluorescent probe for
dynamic and reversible detection of the redox cycles between
peroxynitrite and glutathione. Biochem. Biophys. Res. Commun. 2017,
494, 518−525. (e) Sun, W.; Shi, Y.-D.; Ding, A.-X.; Tan, Z.-L; Chen,
H.; Liu, R.; Wang, R.; Lu, Z.-L. Imaging viscosity and peroxynitrite by
a mitochondria-targeting two-photon ratiometric fluorescent probe.
Sens. Actuators, B 2018, 276, 238−246. (f) Cheng, D.; Pan, Y.; Wang,
L.; Zeng, Z.; Yuan, L.; Zhang, X.; Chang, Y.-T. Selective visualization
of the endogenous peroxynitrite in an inflamed mouse model by a
mitochondria-targetable two-photon ratiometric fluorescent probe. J.
Am. Chem. Soc. 2017, 139, 285−292.
(16) For reviews, see: (a) Abou-Hadeed, K.; Hansen, H.-J. Product
subclass 4: Azulenes and benzazulenes. Sci. Synth 2010, 45, 1060.
(b) Hansen, H.-J. Birth of a structure. The 60th anniversary of the
establishment of the azulene formula by Pfau and Plattner. Part 2.
Chimia 1997, 51, 147. (c) Hansen, H.-J. Birth of a structure. The 60th
anniversary of the establishment of the azulene formula by Pfau and
Plattner. Part 1. Chimia 1996, 50, 489. (d) Lloyd, D. The Chemistry of
Conjugated Cyclic Compounds; Wiley: Chichester, U.K., 1989; Chapter
13. (e) Carbocyclic π-Electron Systems; Kropf, H., Ed.; Georg Thieme:
Stuttgart, 1985; Vol. V/2c, p 127. (f) Lloyd, D. Nonbenzenoid
Conjugated Carbocyclic Compounds; Elsevier: Amsterdam, 1984; pp
352−377. (g) Mochalin, V. B.; Porshnev, Y. N. Advances in the
chemistry of azulene. Russ. Chem. Rev. 1977, 46, 530.
Birzan, L.; Lete, C.; Prodana, M.; Enachescu, M.; Tecuceanu, V.;
Stoian, A. B.; Ungureanu, E.-M. Azulene-ethylenediaminetetraacetic
acid: A versatile molecule for colorimetric and electrochemical sensors
́
for metal ions. Electrochim. Acta 2018, 263, 382−390. (g) Lopez-
Alled, C. M.; Sanchez-Fernandez, A.; Edler, K. J.; Sedgwick, A. C.;
̈
Bull, S. D.; McMullin, C. L.; Kociok-Kohn, G.; James, T. D.; Wenk, J.;
Lewis, S. E. Azulene-boronate esters: colorimetric indicators for
fluoride in drinking water. Chem. Commun. 2017, 53, 12580−12583.
(h) Birzan, L.; Cristea, M.; Draghici, C. C.; Tecuceanu, V.; Maganu,
M.; Hanganu, A.; Arnold, G.-L.; Ungureanu, E.-M.; Razus, A. C. 1-
vinylazulenes - potential host molecules in ligands for metal ion
detectors. Tetrahedron 2016, 72, 2316−2326. (i) Wakabayashi, S.;
Uchida, M.; Tanaka, R.; Habata, Y.; Shimizu, M. Synthesis of azulene
derivatives that have an azathiacrown ether moiety and their selective
color reaction towards silver ions. Asian J. Org. Chem. 2013, 2, 786−
791.
(23) For selected examples, see: (a) Zhou, Y.; Baryshnikov, G.; Li,
X.; Zhu, M.; Ågren, H.; Zhu, L. Anti-Kasha’s rule emissive switching
induced by intermolecular H-bonding. Chem. Mater. 2018, 30, 8008−
8016. (b) Gao, H.; Yang, X.; Xin, H.; Gao, T.; Gong, H.; Gao, X.
Design, synthesis and properties of 2/6-aryl substituted azulene
derivatives. Youji Huaxue 2018, 38, 2680−2692. (c) Gosavi, P. M.;
Moroz, Y. S.; Korendovych, I. V. β-(1-Azulenyl)-L-alanine - A
functional probe for determination of pKa of histidine residues. Chem.
Commun. 2015, 51, 5347−5350. (d) Moroz, Y. S.; Binder, W.;
Nygren, P.; Caputo, G. A.; Korendovych, I. V. Painting proteins blue:
β-(1-azulenyl)-L-alanine as a probe for studying protein-protein
interactions. Chem. Commun. 2013, 49, 490−492. (e) Koch, M.;
Blacque, O.; Venkatesan, K. Impact of 2,6-connectivity in azulene:
Optical properties and stimuli responsive behavior. J. Mater. Chem. C
2013, 1, 7400−7408. (f) Koch, M.; Blacque, O.; Venkatesan, K.
Syntheses and tunable emission properties of 2-alkynyl azulenes. Org.
Lett. 2012, 14, 1580−1583. (g) Salman, H.; Abraham, Y.; Tal, S.;
Meltzman, S.; Kapon, M.; Tessler, N.; Speiser, S.; Eichen, Y. 1,3-Di(2-
pyrrolyl)azulene: An efficient luminescent probe for fluoride. Eur. J.
Org. Chem. 2005, 2005, 2207−2212. (h) Mazzuca, C.; Stella, L.;
Venanzi, M.; Formaggio, F.; Toniolo, C.; Pispisa, B. Mechanism of
membrane activity of the antibiotic trichogin GA IV: A two-state
transition controlled by peptide concentration. Biophys. J. 2005, 88,
3411−3421. (i) Loidl, G.; Musiol, H.-J.; Budisa, N.; Huber, R.; Poirot,
S.; Fourmy, D.; Moroder, L. Synthesis of β-(1-azulenyl)-L-alanine as a
potential blue-colored fluorescent tryptophan analog and its use in
peptide synthesis. J. Pept. Sci. 2000, 6, 139−144.
(17) Bearpark, M. J.; Bernardi, F.; Clifford, S.; Olivucci, M.; Robb,
M. A.; Smith, B. R.; Vreven, T. The Azulene S1 state decays via a
conical intersection: A CASSCF study with MMVB dynamics. J. Am.
Chem. Soc. 1996, 118, 169−175.
(18) (a) Wagner, B. D.; Tittelbach-Helmrich, D.; Steer, R. P.
Radiationless decay of the S2 states of azulene and related
compounds: Solvent dependence and the energy gap law. J. Phys.
Chem. 1992, 96, 7904−7908. (b) Griesser, H. J.; Wild, U. P. The
energy gap dependence of the radiationless transition rates in azulene
and its derivatives. Chem. Phys. 1980, 52, 117−131. (c) Murata, S.;
Iwanaga, C.; Toda, T.; Kokubun, H. Fluorescence yields of azulene
derivatives. Chem. Phys. Lett. 1972, 13, 101−104 erratum, 1972, 15,
152.
(24) Zhang, J.; Petoud, S. Azulene-moiety-based ligand for the
efficient sensitization of four near-infrared luminescent lanthanide
cations: Nd3+, Er3+, Tm3+, and Yb3+. Chem. - Eur. J. 2008, 14, 1264−
1272.
(19) Beer, M.; Longuet-Higgins, H. C. Anomalous light emission of
azulene. J. Chem. Phys. 1955, 23, 1390−1391.
(25) (a) Koh, C. J.; Lee, M. Fluorescence lifetime imaging
microscopy of amyloid aggregates. Bull. Korean Chem. Soc. 2006,
27, 477−478. (b) Pham, W.; Weissleder, R.; Tung, C.-H. An azulene
dimer as a near-infrared quencher. Angew. Chem., Int. Ed. 2002, 41,
3659−3662. (c) Lynch, D. E.; Hamilton, D. G. The history of
azulenyl squaraines. Aust. J. Chem. 2017, 70, 857−871.
(20) Kasha, M. Characterization of electronic transitions in complex
molecules. Discuss. Faraday Soc. 1950, 9, 14−19.
(21) Itoh, T. Fluorescence and phosphorescence from higher excited
states of organic molecules. Chem. Rev. 2012, 112, 4541−4568.
(22) For selected recent examples, see: (a) Gao, H.; Ge, C.; Hou, B.;
Xin, H.; Gao, X. Incorporation of 1,3-free-2,6-connected azulene units
into the backbone of conjugated polymers: Improving proton
responsiveness and electrical conductivity. ACS Macro Lett. 2019, 8,
1360−1364. (b) Xin, H.; Li, J.; Yang, X.; Gao, X. Azulene-based BN-
(26) (a) Zhou, Y.; Zhu, L. Involving synergy of green light and acidic
responses in control of unimolecular multicolor luminescence. Chem. -
Eur. J. 2018, 24, 10306−10309. (b) Zhou, Y.; Zou, Q.; Qiu, J.; Wang,
L.; Zhu, L. Rational design of a green-light-mediated unimolecular
platform for fast switchable acidic sensing. J. Phys. Chem. Lett. 2018, 9,
550−556. (c) Zhou, Y.; Zhuang, Y.; Li, X.; Ågren, H.; Yu, L.; Ding, J.;
Zhu, L. Selective dual-channel imaging on cyanostyryl-modified
azulene systems with unimolecularly tunable visible-near infrared
luminescence. Chem. - Eur. J. 2017, 23, 7642−7647. (d) Dragu, E. A.;
Ion, A. E.; Shova, S.; Bala, D.; Mihailciuc, C.; Voicescu, M.; Ionescu,
S.; Nica, S. Visible-light triggered photoswitching systems based on
fluorescent azulenyl-substituted dithienylcyclopentenes. RSC Adv.
2015, 5, 63282−63286. (e) Kitai, J.-i.; Kobayashi, T.; Uchida, W.;
Hatakeyama, M.; Yokojima, S.; Nakamura, S.; Uchida, K. Photo-
chromism of a diarylethene having an azulene ring. J. Org. Chem.
2012, 77, 3270−3276.
́
(c) Murfin, L. C.; Lopez-Alled, C. M.; Sedgwick, A. C.; Wenk, J.;
James, T. D.; Lewis, S. E. A simple, azulene-based colorimetric probe
for the detection of nitrite in water. Front. Chem. Sci. Eng. 2019,
Wang, F. K.; He, C. Configuration-dependent optical properties and
acid susceptibility of azulene compounds. J. Mater. Chem. C 2018, 6,
5153−5160. (e) Lichosyt, D.; Wasiłek, S.; Dydio, P.; Jurczak, J. The
Influence of binding site geometry on anion-binding selectivity: A
Case study of macrocyclic receptors built on the azulene skeleton.
Chem. - Eur. J. 2018, 24, 11683−11692. (f) Buica, G.-O.; Lazar, I.-G.;
G
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX