PAE37 and were found to have cytocidal activity against
HeLa cells. All these compounds are characterized by a 21-
membered cyclic lactam including a (E,E,E)-triene and four
chiral centers. A series of SAR studies were performed to
screen the most active part of the triene ansamycins. These
One synthetic key issue of the ansamycin is the stereocontrol
of the stereotriad C11-C13. Using our Reformatsky-type
reaction between R-bromo-R′-sulfinyl ketone 6 and the
aldehyde 7 as well as the well-established DIBALH or Lewis
acid/DIBALH diastereoselective reduction of the corre-
sponding ꢀ-keto sulfoxide 8, we report a highly stereose-
lective access to the stereotriad (Scheme 1). To facilitate
6
1
6
3
results indicate that the stereotriad C11-C13, the CH group
6
,7
3
at C14, and the OCH group at C3 are essential.
Absolute and relative stereochemistry of the stereogenic
centers of these ansamycins have been determined or
assigned by Smith and co-workers through careful degra-
Scheme 1
.
Retrosynthesis toward the C9-C16 Unit 5 of
8
dative and spectroscopic methods. To date, only Smith,
Ansamycin
Panek, and very recently Hayashi have reported the total
9
10
synthesis of trienomycin, mycotrienin, thiazinotrienomy-
1
1
4b
cin, and cytotrienin A as well as the macrocyclic core
1
2
of cytotrienin. More recently, Kirschning et al. reported a
multigram scale synthesis of the ansatrienol derivative.
1
3
In relation with a program devoted to asymmetric synthesis
1
4
mediated by sulfoxides, we have recently described a
highly stereoselective Reformatsky-type reaction of chiral
non racemic R-bromo-R′-sulfinyl ketones with aldehydes in
1
5
2
the presence of SmI .
In this paper, we describe the synthesis of the C9-C16
unit 5 of ansamycins bearing the anti,syn stereotriad C11-C13.
elucidation of mechanism of action of ansamycins, the
development of a methodology allowing the synthesis of
some stereoisomers of the stereotriad is highly important.
With our methodology, four diastereomers of the stereotriad
could be easily accessible depending on the absolute con-
figuration of the sulfinyl moiety.
(
6) (a) Kawamura, T; Tashiro, E.; Yamamoto, K.; Shindo, K.; Imoto,
M. J. Antibiot. 2008, 61, 303. (b) Kawamura, T; Tashiro, E.; Shindo, K.;
Imoto, M. J. Antibiot. 2008, 61, 312.
(
7) (a) Funayama, S.; Anraku, Y.; Mita, A.; Yang, Z.-B.; Shibata, K.;
Komiyama, K.; Umezawa, I.; Omura, S. J. Antibiot. 1988, 41, 1223. (b)
Tashiro, E.; Hironiwa, N.; Mitsuhiro, K.; Futamura, Y.; Suzuki, S.-I.; Nishio,
M.; Masaya, I. J. Antibiot. 2007, 60, 549. (c) Kawamura, T; Tashiro, E.;
Yamamoto, K.; Shindo, K.; Imoto, M. J. Antibiot. 2008, 61, 303. (d)
Kawamura, T; Tashiro, E.; Shindo, K.; Imoto, M. J. Antibiot. 2008, 61,
312.
(
8) (a) Smith, A. B., III; Wood, J. L.; Wong, W.; Gould, A. E.; Rizzo,
C. J. J. Am. Chem. Soc. 1990, 112, 7425. (b) Smith, A. B., III; Wood,
J. L.; Wong, W.; Gould, A. E.; Rizzo, C. J.; Barbosa, J.; Komiyama, K.;
Omura, S. J. Am. Chem. Soc. 1996, 118, 8308.
Scheme 2
.
Synthesis of the Aldehyde 7
(
9) (a) Smith, A. B., III; Barbosa, J.; Wong, W.; Wood, J. L. J. Am.
Chem. Soc. 1995, 117, 10777. (b) Smith, A. B., III; Barbosa, J.; Wong,
W.; Wood, J. L. J. Am. Chem. Soc. 1996, 118, 8316.
(
10) (a) Panek, J. S.; Masse, C. E. J. Org. Chem. 1997, 62, 8290. (b)
Masse, C. E.; Yang, M.; Solomon, J.; Panek, J. S. J. Am. Chem. Soc. 1998,
20, 4123.
11) (a) Smith, A. B., III; Wan, Z. Org. Lett. 1999, 1, 1491. (b) Smith,
1
(
A. B., III; Wan, Z. J. Org. Chem. 2000, 65, 3738.
(
(
12) Evano, G.; Schaus, J. V.; Panek, J. S. Org. Lett. 2004, 6, 525.
13) Kashin, D.; Meyer, A.; Wittenberg, R.; Sch o¨ ning, K.-U.; Kamlage,
S.; Kirschning, A. Synthesis 2007, 304.
14) Overviews: (a) Carre n˜ o, M. C. Chem. ReV. 1995, 95, 1717. (b)
Hanquet, G.; Colobert, F.; Lanners, S.; Solladi e´ , G. ARKIVOC 2003, 7,
28. (c) Fernandez, I.; Khiar, N. Chem. ReV. 2003, 103, 3651. Recent work:
c) Colobert, F.; Castanet, A.-S.; Abillard, O. Eur. J. Org. Chem. 2005,
334. (d) Broutin, P.-E.; Colobert, F. Org. Lett. 2005, 7, 3737. (e) Broutin,
(
3
(
3
P.-E.; Colobert, F. Eur. J. Org. Chem. 2005, 1113. (f) Colobert, F.;
Ballesteros-Garrido, R.; Leroux, F. R.; Ballesteros, R.; Abarca, B. Tetra-
hedron Lett. 2007, 48, 6896. (g) Colobert, F.; Choppin, S.; Ferreiro-Mederos,
L.; Obringer, M.; Luengo Arratta, S.; Urbano, A.; Carre n˜ o, M. C. Org.
Lett. 2007, 9, 4451. (h) Carre n˜ o, M. C.; Hernandez-Torres, G.; Urbano,
A.; Colobert, F. Eur. J. Org. Chem. 2008, 12, 2035.
17
The synthesis of the aldehyde 7 depicted in Scheme 2
began with the formation of the diethyl acetal of ethyl
pyruvate in the presence of triethyl orthoformate in concen-
trated sulfuric acid. Reduction of the ester moiety with
(
15) (a) Obringer, M.; Colobert, F.; Neugnot, B.; Solladi e´ , G. Org. Lett.
2
003, 5, 629. (b) Obringer, M.; Colobert, F.; Solladi e´ , G. Eur. J. Org. Chem.
006, 1455.
2
(
16) Early work: (a) Carre n˜ o, M. C.; Garc ´ı a Ruano, J. L.; Mart ´ı n, A.;
4
LiAlH followed by transacetalization in the presence of
Pedregal, C.; Rodr ´ı guez, J. H.; Rubio, A.; S a´ nchez, J.; Solladi e´ , G. J. Org.
Chem. 1990, 55, 2120. Recent examples: (b) Lanners, S.; Hassan, N.-A.;
Salom-Roig, X. J.; Hanquet, G. Angew. Chem. Int. Ed. 2007, 46, 7086. (c)
Raghavan, S.; Krishnaiah, V. Tetrahedron Lett. 2006, 47, 7611. (d)
Cardellicchio, C.; Omar, O. H.; Naso, F.; Capozzi, M. A. M.; Capitellic,
F.; Bertolasi, V. Tetrahedron: Asymmetry 2006, 17, 223. (e) Des Mazery,
R.; Pullez, M.; L o´ pez, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa,
B. L. J. Am. Chem. Soc. 2005, 127, 9966.
diethylene glycol afforded the dioxolane derivative which
was then submitted to a Moffatt-type oxidation to give the
aldehyde 7 in 52% overall yield.
(17) Fujisawa, T.; Kooriyama, Y.; Shimizu, M. Tetrahedron Lett. 1996,
37, 3881.
Org. Lett., Vol. 11, No. 16, 2009
3543