ChemComm
Communication
A*STAR (ARAP Programme) for a post-graduate scholarship
(NB). PAG thanks the Royal Society and the Wolfson Founda-
tion for a Royal Society Wolfson Research Merit Award.
Notes and references
1 (a) L. E. Buerkle and S. J. Rowan, Chem. Soc. Rev., 2012, 41, 6089–
6102; (b) D. K. Smith, Chem. Soc. Rev., 2009, 38, 684–694.
2 (a) M. D. Segarra-Maset, V. J. Nebot, J. F. Miravet and B. Escuder,
Chem. Soc. Rev., 2013, 42, 7086–7098, DOI: 10.1039/c2cs35436e;
(b) D. B. Liu, W. W. Chen, J. H. Wei, X. B. Li, Z. Wang and
X. Y. Jiang, Anal. Chem., 2012, 84, 4185–4191; (c) Q. G. Wang,
Z. M. Yang, M. L. Ma, C. K. Chang and B. Xu, Chem.–Eur. J., 2008,
14, 5073–5078; (d) Q. G. Wang, Z. M. Yang, L. Wang, M. L. Ma and
B. Xu, Chem. Commun., 2007, 1032–1034; (e) K. M. Xu, W. W. Ge,
G. L. Liang, L. Wang, Z. M. Yang, Q. G. Wang, I. M. Hsing and B. Xu,
Int. J. Radiat. Biol., 2008, 84, 353–362; ( f ) S. C. Li, V. T. John,
G. C. Irvin, S. H. Rachakonda, G. L. McPherson and C. J. O’Connor,
J. Appl. Phys., 1999, 85, 5965–5967; (g) H. S. Lim, J. H. Lee,
J. J. Walish and E. L. Thomas, ACS Nano, 2012, 6, 8933–8939;
(h) Y. Tang, E. C. Tehan, Z. Y. Tao and F. V. Bright, Anal. Chem.,
2003, 75, 2407–2413; (i) H. F. Yao, A. J. Shum, M. Cowan,
I. Lahdesmaki and B. A. Parviz, Biosens. Bioelectron., 2011, 26,
3290–3296; ( j) Z. H. Zhang, H. P. Liao, H. Li, L. H. Nie and
S. Z. Yao, Anal. Biochem., 2005, 336, 108–116.
Fig. 2 The time required for complete/partial gel formation (1 mL) by com-
pound 4 in toluene in the presence of GD (0.010 mL/0.025 mL). Gelation
experiments were first observed after 0.5 min.
(soman, GD). GD was found to behave similarly to the DMMP
simulant and result in longer times required for gel formation
(Fig. 2). Interestingly lower concentrations of GD were required
to stop gel formation completely. This may be due to the higher
degree of polarity of GD vs. DMMP resulting in stronger hydro-
gen bonding interactions. Additionally, the fluorine group itself
presents a hydrogen bond acceptor site for interaction with the
gelator, although such interactions are likely to be significantly
weaker than the N–HÁ Á ÁOQP hydrogen bonds. Small quantities
of fluoride generated from partial hydrolysis of the GD may also
perturb the hydrogen-bonding network. Finally, the bulky alkyl
side chain of GD may provide steric hindrance to gel formation
once the molecule is associated with the gelator species. NMR
experiments showed no reaction between either the amine (tren)
or hexylisocyanate with GD (see ESI†).
The formation of hydrogen-bonded gels containing urea
groups has been shown to be responsive to the presence of both
the nerve agent simulant DMMP, and the nerve agent soman
(GD), with the response to the latter being more sensitive. The
guest-stimulated response is proposed to be due to a combination
of solvent polarity and the perturbation of hydrogen bonding
interactions between the gelator molecules by the competitive
binding of the nerve agent or simulant with additions of phos-
phonate (0.01 mL). Thus this method represents a new procedure
for sensing nerve agents that functions via the suppression of a
sol–gel phase change. We are continuing to study the interaction
of gelators with organophosphorus nerve agents at room tem-
perature and exploring how this phenomenon can be used in
detection technology. The results of these studies will be
reported in due course.
´
3 (a) B. Escuder, J. F. Miravet and J. A. Saez, Org. Biomol. Chem., 2008,
´
6, 4378–4383; (b) J. A. Saez, B. Escuder and J. F. Miravet, Chem.
Commun., 2010, 46, 7996–7998.
4 J. W. Steed, Chem. Soc. Rev., 2010, 39, 3686–3699; M.-O. Piepenbrock,
G. O. Lloyd, N. Clarke and J. W. Steed, Chem. Rev., 2010, 110,
1960–2004.
5 J. A. Foster, M. O. M. Piepenbrock, G. O. Lloyd, N. Clarke, J. A. K.
Howard and J. W. Steed, Nat. Chem., 2010, 2, 1037–1043.
6 (a) P. A. Gale, Acc. Chem. Res., 2006, 39, 465–475; (b) P. A. Gale, Acc.
Chem. Res., 2011, 44, 216–226.
7 (a) C. Caltagirone, J. R. Hiscock, M. B. Hursthouse, M. E. Light and
P. A. Gale, Chem.–Eur. J., 2008, 14, 10236–10243; (b) P. A. Gale,
J. R. Hiscock, S. J. Moore, C. Caltagirone, M. B. Hursthouse and
M. E. Light, Chem.–Asian J., 2010, 5, 555–561; (c) P. A. Gale,
J. R. Hiscock, C. Z. Jie, M. B. Hursthouse and M. E. Light, Chem.
Sci., 2010, 1, 215–220.
8 M. R. Sambrook, J. R. Hiscock, A. Cook, A. C. Green, I. Holden,
J. C. Vincent and P. A. Gale, Chem. Commun., 2012, 48, 5605–5607.
´
´˜
9 A. Barba-Bon, A. M. Costero, M. Parra, S. Gil, R. Martınez-Manez,
´
F. Sancenon, P. A. Gale and J. R. Hiscock, Chem.–Eur. J., 2013, 19,
1586–1590.
10 (a) I. Ravikumar and P. Ghosh, Chem. Soc. Rev., 2012, 41, 3077–3098;
(b) R. Custelcean, Chem. Soc. Rev., 2010, 39, 3675–3685.
´
11 N. Busschaert, M. Wenzel, M. E. Light, P. Iglesias-Hernandez,
´
´
R. Perez-Tomas and P. A. Gale, J. Am. Chem. Soc., 2011, 133,
14136–14148.
12 (a) M. de Loos, A. G. J. Ligtenbarg, J. van Esch, H. Kooijman,
A. L. Spek, R. Hage, R. M. Kellogg and B. L. Feringa, Eur. J. Org.
Chem., 2000, 3675–3678; (b) S. Mukhopadhyay, U. Maitra, Ira,
G. Krishnamoorthy, J. Schmidt and Y. Talmon, J. Am. Chem. Soc.,
2004, 126, 15905–15914; (c) C. E. Stanley, N. Clarke, K. M. Anderson,
J. A. Elder, J. T. Lenthall and J. W. Steed, Chem. Commun., 2006,
3199–3201.
13 J. van Esch, R. M. Kellogg and B. L. Ferringa, Tetrahedron Lett., 1997,
38, 281–284.
14 J. Tanaka, in Gels Handbook, ed. Y. Osada and K. Kajiwara, Academic
Press, San Diego, 2001, vol. 1, pp. 51–64.
We thank the Ministry of Defence (Dstl MOD CDE 28704)
(JRH) for funding. FP is funded by the A-I Chem Channel
project a European INTERREG IV A France (Channel) – England
Cross border cooperation programme, co-financed by ERDF.
Additionally we thank the University of Southampton and
15 (a) M. Suzuki, Y. Nakajima, M. Yumoto, M. Kimura, H. Shirai and
K. Hanabusa, Org. Biomol. Chem., 2004, 2, 1155–1159; (b) M. George
and R. G. Weiss, J. Am. Chem. Soc., 2001, 123, 10393–10394;
(c) M. George and R. G. Weiss, Langmuir, 2002, 18, 7124–7135.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 9119--9121 9121