ATOP Dyes
J. Am. Chem. Soc., Vol. 123, No. 12, 2001 2811
and improved morphological stability of the materials. In this
paper, we concentrate on two aspects, refractive index modula-
tion and morphological stability; we also discuss the tradeoff
between these material properties and describe systematic
strategies for their optimization.
low glass-transition temperatures (<25 °C), which facilitate
device fabrication and allow for “orientational enhancement”
(reorientation of dyes in the internal space-charge field).13
Composites will probably also be the natural choice for industrial
applications because they allow simple fine-tuning for appli-
cations with different demands. Organic CTAs are already
well-established and successfully used in photocopiers, laser
The PR effect comprises a series of events taking place when
two coherent laser beams interfere in a material that exhibits
both photoconductiVity and electrooptical (EO) response. In a
first step charge carriers are generated in the bright regions of
the interference pattern by photoexcitation of spectral sensitizers
and charge transfer to the charge-transport agent (CTA).
Subsequently, the mobile charges are transferred by the CTA
from the bright to the dark regions by diffusion or, more
effectively, by an electric-field-assisted drift process. The
charges then get trapped and create a periodic space-charge
distribution between bright and dark regions of the material. In
a final step reorientation of dipolar EO chromophores occurs
in the total electric field (external plus space-charge field), and
a refractive index grating is produced. This multistep hologram
formation process in photorefractive materials exhibits several
unique features which are not achieved with other photo-
addressable materials: (1) the refractive index gratings are out
of phase with respect to the original light intensity pattern; (2)
the writing process is fully reversible; and (3) only weak laser
intensities are required. The phase shift between intensity and
refractive index grating gives rise to energy exchange between
the two writing beams (“two-beam coupling”), an effect
characteristic of PR materials and of considerable interest for
optical data processing.
14,15
16
printers,
and, more recently, organic light-emitting devices.
EO chromophores, on the other hand, have been studied rather
1
7
extensively in the field of nonlinear optics, but hitherto
no final candidates for technological applications have been
identified. With regard to morphological properties, the com-
posite should have the capability of forming amorphous films
of high optical quality. Any microphase separation must be
avoided because it will cause light scattering.
Eventually in 1996 the so-called “orientational enhancement
1
3
effect” in low-Tg polymeric PR materials was be consistently
(3)
interpreted in terms of the Kerr susceptibility ø (-ω;ω,0,0),
(2)
in contrast to the Pockels susceptibility ø (-ω;ω,0) in crystalline
1
8
materials. This allowed the derivation of a suitable figure-of-
Kerr
merit F
for the electronic properties of PR chromophores,
Kerr
1
M
2
F
)
[9µ‚â + 2µ ‚δR/(k T)]
(1)
B
where µ is the dipole moment, δR the anisotropy of the linear
polarizability, â the second-order polarizability, k the Boltz-
B
18
mann constant, T the temperature, and M the molar mass.
Kerr
Usually, the figure-of-merit is reported as F0 , where the
subscript “0” indicates dispersion-free values at infinite wave-
length (λ f ∞).
Multicomponent organic materials seem to be well-suited to
optimize the different optical and electrical functionalities due
to their compositional flexibility. Currently, the most advanced
organic PR materials are composites of two major components
providing charge transport and EO response, small amounts of
a photosensitizer for the given laser wavelength, and signifi-
cant amounts of plastisizers. The latter are added to achieve
On the basis of eq 1, clear guidelines for the most favorable
chromophores could be developed. In a detailed study on
two series of merocyanine chromophores covering the whole
range of electronic structures from polyene-like to betaine-
like, we could unambiguously confirm eq 1 and elucidate the
1
9,20
various contributions.
It was shown that in contrast to
(8) (a) Tamura, K.; Padias, A. B.; Hall, H. K., Jr.; Peyghambarian, N.
permanently poled (e.g. crystalline or high-Tg polymeric) PR
materials, where the nonlinearity only depends on the µ‚â
Pockels term, PR effects in low-Tg materials are dominated by
Appl. Phys. Lett. 1992, 60, 1803-1805. (b) Kippelen, B.; Tamura, K.;
Peyghambarian, N.; Padias, A. B.; Hall, H. K., Jr. J. Appl. Phys. 1993, 74,
3
617-3619. (c) Kippelen, B.; Tamura, K.; Peyghambarian, N.; Padias, A.
B.; Hall, H. K., Jr. Phys. ReV. B 1993, 48, 10710-10718. (d) Yu, L.; Chen,
Y. M., Chan, W. K. J. Phys. Chem. 1995, 99, 2797-2802. (e) Yu, L.;
Chan, W. K.; Peng, Z.; Gharavi, A. Acc. Chem. Res. 1996, 29, 13-21. (f)
Peng, Z.; Gharavi, A. R.; Yu, L. J. Am. Chem. Soc. 1997, 119, 4622-
(13) Moerner, W. E.; Silence, S. M.; Hache, F.; Bjorklund, G. C. J. Opt.
Soc. Am. B 1994, 11, 320-330.
(14) Law, K.-Y. Chem. ReV. 1993, 93, 449-486.
(15) (a) Wiedemann, W. Chem.-Z. 1982, 106, 275-287. (b) Gibson, H.
W. Polymer 1984, 25, 3-27. (b) Strohriegl, P.; Grazulevicius, J. V. In
Handbook of Organic ConductiVe Molecules and Polymers; Nalwa, H. S.,
Ed.; Wiley: Chichester, 1997; Vol. 1, pp 553-620.
(16) (a) Salbeck, J. Ber. Bunsen-Ges. Phys. Chem. 1996, 100, 1667-
1677. (b) Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.;
Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Br e´ das, J.
L.; L o¨ gdlund, M.; Salaneck, W. R. Nature 1999, 397, 121-128. (c) Heeger,
A. J. Solid State Commun. 1998, 107, 673-679.
(17) (a) Wolff, J. J.; Wortmann, R. AdV. Phys. Org. Chem. 1999, 32,
121-217. (b) Verbiest, T.; Houbrechts, S.; Kauranen, M.; Clays, K.;
Persoons, A. J. Mater. Chem. 1997, 7, 2175-2189. (c) Kanis, D. R.; Ratner,
M. A.; Marks, T. J. Chem. ReV. 1994, 94, 195-242. (d) Burland, D. M.;
Miller, R. D.; Walsh, C. A. Chem. ReV. 1994, 94, 31-75.
(18) (a) Wortmann, R.; Poga, C.; Twieg, R. J.; Geletneky, C.; Moylan,
C. R.; Lundquist, P. M.; DeVoe, R. G.; Cotts, P. M.; Horn, H.; Rice, J.;
Burland, D. M. J. Chem. Phys. 1996, 105, 10637-10647. (b) Kippelen,
B.; Meyers, F.; Peyghambarian, N.; Marder, S. J. Am. Chem. Soc. 1997,
119, 4559-4560.
(19) Wortmann, R.; W u¨ rthner, F.; Sautter, A.; Lukaszuk, K.; Matschiner,
R.; Meerholz, K. Proc. SPIE 1998, 3471, 41-49.
4
2
9
232. (g) Wang, L.; Wang, Q.; Yu, L. Appl. Phys. Lett. 1998, 73, 2546-
548. (h) Li, W.; Gharavi, A.; Wang, Q.; Yu, L. AdV. Mater. 1998, 10,
27-931. (i) D o¨ bler, M.; Weder, C.; Neuenschwander, P.; Suter, U. W.;
Follonier, S.; Bosshard, C.; G u¨ nter, P. Macromolecules 1998, 31, 6184-
6
189. (j) Schloter, S.; Hofmann, U.; Hoechstetter, K.; B a¨ uml, G.; Haarer,
D. J. Opt. Soc. Am. B 1998, 15, 2560-2565. (k) Bratcher, M. S.; DeClue,
M. S.; Grunnet-Jepsen, A.; Wright, D.; Smith, B. R.; Moerner, W. E.; Siegel,
J. S. J. Am Chem. Soc. 1998, 120, 9680-9681. (l) Hattemer, E.; Zentel,
R.; Mecher, E.; Meerholz, K. Macromolecules 2000, 33, 1972-1977.
(
9) Lundquist, P. M.; Wortmann, R.; Geletneky, C.; Twieg, R. J.;
Jurich, M.; Lee, V. Y.; Moylan, C. R.; Burland, D. M. Science 1996, 274,
1
182-1185.
(
10) (a) Li, W.; Gharavi, A.; Wang, Q.; Yu, L. AdV. Mater. 1998, 10,
927-931. (b) Wang, L.; Zhang, Y.; Wada, T.; Sasabe, H. Appl. Phys. Lett.
996, 69, 728-730. (c) Wang, L.; Zhang, Y.; Wada, T.; Sasabe, H. Appl.
1
Phys. Lett. 1997, 70, 2949-2951. (d) Grasruck, M.; Schreiber, A.; Hofmann,
U.; Zilker, S.; Leopold, A.; Schloter, S.; Hohle, C.; Strohriegl, P.; Haarer,
D. Phys. ReV. B 1999, 60, 16543-16548. (e) Hohle, C.; Hofmann, U.;
Schloter, S.; Thelakkat, M.; Strohriegl, P.; Haarer, D.; Zilker, S. J. J. Mater.
Chem. 1999, 9, 2205-2210.
(
11) (a) Khoo, I. C.; Li, H.; Liang, Y. Opt. Lett. 1994, 19, 1723-1725.
b) Wiederrecht, G. P.; Yoon, B. A.; Wasielewski, M. R. Science 1996,
70, 1794-1797. (c) Wiederrecht, G. P.; Yoon, B. A.; Svec, W. A.;
Wasielewski, M. R. J. Am. Chem. Soc. 1997, 119, 3358-2264.
12) (a) Ono, H.; Kawatsuki, N. Opt. Lett. 1997, 22, 1144-1146. (b)
Golemme, A.; Volodin, B. L.; Kippelen, B.; Peyghambarian, N. Opt. Lett.
997, 22, 1226-1228. (c) Golemme, A.; Kippelen, B.; Peyghambarian, N.
Appl. Phys. Lett. 1998, 73, 2408-2410.
(
(20) (a) W u¨ rthner, F.; Thalacker, C.; Matschiner, R.; Lukaszuk, K.;
Wortmann, R. Chem. Commun. 1998, 1739-1740. (b) Beckmann, S.;
Etzbach, K.-H.; Kr a¨ mer, P.; Lukaszuk, K.; Matschiner, R.; Schmidt, A. J.;
Schuhmacher, P.; Sens, R.; Seybold, G.; Wortmann, R.; W u¨ rthner, F. AdV.
Mater. 1999, 11, 536-541. (c) Wortmann, R.; Glania, C.; Kr a¨ mer, P.;
Lukaszuk, K.; Matschiner, R.; Twieg, R. J.; You, F. Chem. Phys. 1999,
245, 107-120.
2
(
1