Organic Letters
Letter
(8) A variety of Grignard reagents are known to be useful for
converting Ti(O-i-Pr)4 to a reactive organometallic intermediate in
the context of metallacycle-mediated bond-forming processes. The
choice to employ c-C5H9MgCl instead of i-PrMgCl (see ref5) here is
viewed at this point in time as being arbitrary.
(9) For example, see: Bird, R.; Knipe, A. C.; Stirling, C. J. M. J.
Chem. Soc., Perkin Trans. 2 1973, 1215−1220.
(10) (a) Beesley, R. M.; Ingold, C. K.; Thorpe, J. F. J. Chem. Soc.,
Trans. 1915, 107, 1080−1106. (b) Jung, M. E.; Piizzi, G. Chem. Rev.
2005, 105, 1735−1766.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
(11) Substrates explored for this annulation uniformly contained a
quaternary center between the two ketones due to anticipated
problems associated with competitive enolization under the reaction
conditions. Attempts to employ an α-monosubstituted β-keto imide
were unsuccessful. For an interesting selective enolization of such a β-
keto imide, see: Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V.
J.; Sheppard, G. S. J. Am. Chem. Soc. 1990, 112, 866−868.
(12) Switching the nature of the ethereal solvent used for these
annulation reactions was not found to have a significant impact on
efficiency (Et2O vs THF). In addition, the competing process of
deoxygenation, as seen in Figure 4, represents an ever-present obstacle
for optimization of the annulation reaction to deliver tertiary alcohol-
containing products due to what appears to be substrate-dependent
variable rates of reaction for the subsequent deoxygenation. Over the
course of our initial study, benefits were sometimes observed by
minor modification of the reaction conditions or experimental setup
ACKNOWLEDGMENTS
■
We gratefully acknowledge financial support of this work by
the National Institutes of Health NIGMS (GM124004).
REFERENCES
■
(1) (a) Wender, P. A. Nat. Prod. Rep. 2014, 31, 433−440.
(b) Ishihara, Y.; Baran, P. S. Synlett 2010, 2010, 1733−1745.
(c) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem., Int. Ed.
2009, 48, 2854−2867. (d) Chen, K.; Baran, P. S. Nature 2009, 459,
824−828.
(2) For recent reviews, see: (a) Hartwig, J. F. J. Am. Chem. Soc. 2016,
138, 2−24. (b) Qiu, Y.; Gao, S. Nat. Prod. Rep. 2016, 33, 562−581.
(c) Nakamura, A.; Nakada, M. Synthesis 2013, 45, 1421−1451.
(d) Chen, D. Y.-K.; Youn, S. W. Chem. - Eur. J. 2012, 18, 9452−9474.
(e) Gutekunst, W. R.; Baran, P. S. Chem. Soc. Rev. 2011, 40, 1976−
1991.
(3) (a) Brummond, K. M.; Kent, J. L. Tetrahedron 2000, 56, 3263−
3283. (b) Schore, N. E. Org. React. 1991, 40, 1−90. For examples
with more substituted enyne substrates, see: (c) Knudsen, M. J.;
Schore, N. E. J. Org. Chem. 1984, 49, 5025−5026. (d) Schore, N. E.;
Knudsen, J. J. Org. Chem. 1987, 52, 569−580. (e) Schore, N. E.;
Rowley, E. G. J. Am. Chem. Soc. 1988, 110, 5224−5225. (f) Rowley, E.
G.; Schore, N. E. J. Org. Chem. 1992, 57, 6853−6861. (g) Stolle, A.;
Becker, H.; Salaun, J.; de Meijere, A. Tetrahedron Lett. 1994, 35,
̈
́
3517−3520. (h) Tormo, J.; Verdaguer, X.; Moyano, A.; Pericas, M.
A.; Riera, A. Tetrahedron 1996, 52, 14021−14040. (i) Tormo, J.;
́
Moyano, A.; Pericas, M. A.; Riera, A. J. Org. Chem. 1997, 62, 4851−
4856. (j) Ishizaki, M.; Iwahara, K.; Kyoumura, K.; Hoshino, O. Synlett
1999, 1999, 587−589. (k) Kerr, W. J.; McLaughlin, M.; Morrison, A.
J.; Pauson, P. L. Org. Lett. 2001, 3, 2945−2948. (l) Ishizaki, M.;
Iwahara, K.; Niimi, Y.; Satoh, H.; Hoshino, O. Tetrahedron 2001, 57,
2729−2738. (m) Son, S. U.; Park, K. H.; chung, Y. K. J. Am. Chem.
Soc. 2002, 124, 6838−6839. (n) de Meijere, A.; Becker, H.; Stolle, A.;
̈
Kozhushkov, S. I.; Bes, M. T.; Salaun, J.; Noltemeyer, M. Chem. - Eur.
J. 2005, 11, 2471−2482.
(4) (a) Jamison, T. F.; Shambayati, S.; Crowe, W. E.; Schreiber, S. L.
J. Am. Chem. Soc. 1997, 119, 4353−4363. (b) Chuang, K. V.; Xu, C.;
Reisman, S. E. Science 2016, 353, 912−915. (c) Jørgensen, L.;
McKerrall, S. J.; Kuttruff, C. A.; Ungeheuer, F.; Felding, J.; Baran, P. S.
Science 2013, 341, 878−882.
(5) Kier, M. J.; Leon, R. M.; O’Rourke, N. F.; Rheingold, A. L.;
Micalizio, G. C. J. Am. Chem. Soc. 2017, 139, 12374−12377.
(6) Du, K.; Kier, M. J.; Rheingold, A. L.; Micalizio, G. C. Org. Lett.
2018, 20, 6457−6461.
(7) For reviews of Ti(O-i-Pr)4-based metallacycle-mediated coupling
chemistry, see: (a) Wolan, A.; Six, Y. Tetrahedron 2010, 66, 15−61.
(b) Kulinkovich, O. G.; de Meijere, A. Chem. Rev. 2000, 100, 2789−
2834. (c) Sato, F.; Urabe, H.; Okamoto, S. Chem. Rev. 2000, 100,
2835−2886. (d) Reichard, H. A.; McLaughlin, M.; Chen, M. Z.;
Micalizio, G. C. Eur. J. Org. Chem. 2010, 2010, 391−409. (e) Reichard,
H. A.; Micalizio, G. C. Chem. Sci. 2011, 2, 573−589. (f) Micalizio, G.
C. Early Transition Metal Mediated Reductive Coupling Reactions. In
Molander, G. A., Knochel, P., Eds. Comprehensive Organic Synthesis,
2nd ed.; Elsevier: Oxford, 2014; Vol. 5, pp 1660−1737. For a review
of the use of metallacycle-mediated cross-coupling in natural product
synthesis, see: (g) O’Rourke, N. F.; Kier, M. J.; Micalizio, G. C.
Tetrahedron 2016, 72, 7093−7123.
D
Org. Lett. XXXX, XXX, XXX−XXX