Page 9 of 11
Journal of the American Chemical Society
Carbocyclization. Org. Lett. 2011, 13, 5580. (b) Barriault, L.; Bella-
Novel Product from Penicillium hordei Cultured on Plant Tissue Agar.
Tetrahedron Lett. 2005, 46, 3225. .
vance, G. Total syntheses of hyperforin and papuaforins A-C, and for-
mal synthesis of nemorosone through a gold(I)-catalyzed carbocycliza-
tion. Angew. Chem. Int. Ed. 2014, 53, 6701.
(23) Cervi, A.; Aillard, P.; Hazeri, N.; Petit, L.; Chai, C. L. L.; Willis,
A. C.; Banwell, M. G. Total Syntheses of the Coumarin-Containing
Natural Products Pimpinellin and Fraxetin Using Au(I)-Catalyzed In-
tramolecular Hydroarylation (IMHA) Chemistry. J. Org. Chem. 2013,
78, 9876.
(24) Fürstner and coworkers have explored the use of Au(I) catalysis
for the synthesis of both 2- and 4-pyrones. For relevant examples, see:
(a) Fürstner, A. Gold Catalysis for Heterocyclic Chemistry: A Repre-
sentative Case Study on Pyrone Natural Products. Angew. Chem. Int.
Ed. 2017, 57, 4215. (b) Hoffmeister, L.; Fukuda, T.; Pototschnig, G.;
Fürstner, A. Total Synthesis of an Exceptional Brominated 4-Pyrone
Derivative of Algal Origin: An Exercise in Gold Catalysis and Alkyne
Metathesis. Chem. Eur. J. 2015, 21, 4529. (c) Chaładaj, W.; Corbet,
M.; Fürstner, A. Total Synthesis of Neurymenolide A Based on a Gold‐
Catalyzed Synthesis of 4‐Hydroxy‐2‐pyrones. Angew. Chem. Int. Ed.
2012, 51, 6929.
1
2
3
4
5
6
7
8
(32) Markwell-Heys, A. W.; Kuan, K. K. W.; George, J. H. Total Syn-
thesis and Structure Revision of (−)-Siphonodictyal B and Its Biomi-
metic Conversion into (+)-Liphagal. Org. Lett. 2015, 17, 4228.
(33) Galván, A.; Fañanás, F. J.; Rodríguez, F. Multicomponent and
Multicatalytic Reactions – A Synthetic Strategy Inspired by Nature.
Eur. J. Inorg. Chem. 2016, 1306.
(34) (a) Barluenga, J.; Mendoza, A.; Rodríguez F.; Fañanás, F. J. Syn-
thesis of Furoquinolines by a One-Pot Multicomponent Cascade Reac-
tion Catalyzed by Platinum Complexes. Chem. Eur. J. 2008, 14, 10892.
(b) Barluenga, J.; Mendoza, A.; Rodríguez, F.; Fañanás, F. J. Synthesis
of Spiroquinolines through a One-Pot Multicatalytic and Multicompo-
nent Cascade Reaction. Angew. Chem. Int. Ed. 2008, 47, 7044. (c) Bar-
luenga, J.; Mendoza, A.; Rodríguez, F.; Fañanás, F. J. A Palladium(II)-
Catalyzed Synthesis of Spiroacetals through a One-Pot Multicompo-
nent Cascade Reaction. Angew. Chem. Int. Ed. 2009, 48, 1644. (d) Arto,
T.; Fañanás, F. J.; Rodríguez, F. Gold(I)-Catalyzed Generation of the
Two Components of a Formal [4+2] Cycloaddition Reaction for the
Synthesis of Tetracyclic Pyrano[2,3,4-de]chromenes. Angew. Chem.
Int. Ed. 2016, 55, 7218.
(35) (a) Bender, C. F.; Yoshimoto, F. K.; Paradise, C. L.; De Brabander,
J. K. A Concise Synthesis of Berkelic Acid Inspired by Combining the
Natural Products Spicifernin and Pulvilloric Acid. J. Am. Chem. Soc.
2009, 131, 11350. (b) Fañanás, F. J.; Mendoza, A.; Arto, T.; Temelli,
B.; Rodríguez, F. Scalable Total Synthesis of (−)-Berkelic Acid by Us-
ing a Protecting-Group-Free Strategy. Angew. Chem. Int. Ed. 2012, 51,
4930. (c) Bender, C. F.; Paradise, C. L.; Lynch, V. M.; Yoshimoto, F.
K.; De Brabander, J. K. A Biosynthetically Inspired Synthesis of (−)-
Berkelic Acid and Analogs. Tetrahedron 2018, 74, 909.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(25) Liu, K.; Wang, J.-L.; Wu, H.-B.; Wang, Q.; Bi, K.-L.; Song, Y.-F.
A New Pyrone from Lenzites betulina. Chem. Nat. Compd. 2012, 48,
780.
(26) (a) Rieche, A.; Gross, H,; Höft, E. α-Haloethers. IV. Synthesis of
Aromatic Aldehydes with Dichloromethyl Alkyl Ethers. Chem. Ber.
1960, 93, 88. (b) Ramos-Tomillero, I.; ParadÍs-Bas, M.; De Pinho Ri-
beiro Moreira, I.; Bofill, J.M.; Nicolás, E. Albericio, F. Formylation of
Electron-Rich Aromatic Rings Mediated by Dichloromethyl Methyl
Ether and TiCl 4 : Scope and Limitations. Molecules 2015, 20, 5409.
(27) For recent reviews on the use and formation of ortho-quinone
methides see: (a) Bai, W.-J.; David, J. G.; Feng, Z.-G.; Weaver, M. G.;
Wu, K.-L.; Pettus, T. R. R. The Domestication of ortho-Quinone
Methides. Acc. Chem. Res. 2014, 47, 3655. (b) Singh, M. S.; Nagaraju,
A.; Anand, N.; Chowdhury, S. ortho-Quinone Methide (o-QM): a
Highly Reactive, Ephemeral and Versatile Intermediate in Organic
Synthesis. RSC Adv. 2014, 4, 55924. (c) Willlis, N. J.; Bray, C. D. or-
tho-Quinone Methides in Natural Product Synthesis. Chem. Eur. J.
2012, 18, 9160.
(36) Stierle, A. A.; Stierle, D. B. Kelly, K. Berkelic Acid, A Novel Spi-
roketal with Selective Anticancer Activity from an Acid Mine Waste
Fungal Extremophile. J. Org. Chem. 2006, 71, 5357.
(37) The originally-assigned structure of berkelic acid was corrected by
Fürstner and coworkers: Buchgraber, P.; Snaddon, T. N.; Wirtz, C.;
Mynott, R.; Goddard, R.; Fürstner, A. A Synthesis-Driven Structure
Revision of Berkelic Acid Methyl Ester. Angew. Chem. Int. Ed. 2008,
47, 8450.
(38) For a review on -acid catalysis, see: Fürstner, A.; Davies, P. Cat-
alytic Carbophilic Activation: Catalysis by Platinum and Gold Acids.
Angew. Chem. Int. Ed. 2007, 46, 3410.
(39) Cheon, C. H.; Kanno, O.; Toste, F. D. Chiral Brønsted Acid from
a Cationic Gold(I) Complex: Catalytic Enantioselective Protonation of
Silyl Enol Ethers of Ketones. J. Am. Chem. Soc. 2011, 133, 13248.
(40) Kanno, O.; Kuriyama, W.; Wang, Z. J.; Toste, F. D. Regio- and
Enantioselective Hydroamination of Dienes by Gold(I)/ Menthol Co-
operative Catalysis. Angew. Chem. Int. Ed. 2011, 50, 9919.
(41) Cramer and coworkers have reported the computational evaluation
of concerted and stepwise pathways in their biomimetic synthesis of
psiguadial B: Newton, C. G.; Tran, D. N.; Wodrich, M. D.; Cramer, N.
One-Step Multigram-Scale Biomimetic Synthesis of Psiguadial B. An-
gew. Chem. Int. Ed. 2017, 56, 13776.
(42) For additional examples of transition state calculations for o-QM
cycloadditions, see: (a) Xu, L.; Liu, F.; Xu, L.-W.; Gao, Z.; Zhao, Y.-
M. A Total Synthesis of Paeoveitol. Org. Lett. 2016, 18, 3698. (b) Niel-
sen, C. D.-T.; Mooij, W. J.; Sale, D.; Rzepa, H. S.; Burés, J.; Spivey,
A. C. Reversibility and reactivity in an acid catalyzed cyclocondensa-
tion to give furanochromanes – a reaction at the ‘oxonium-Prins’ vs.
‘ortho-quinone methide cycloaddition’ mechanistic nexus. Chem. Sci.
2019, 10, 406. (c) Lumb, J.-P.; Krinsky, J. L.; Trauner, D. Theoretical
Investigation of the Rubicordifolin Cascade. Org. Lett. 2010, 12, 5162.
(d) Wang, W.; Wei, D. A DFT Study of N-Heterocyclic Carbene Cata-
lyzed [4+2] Annulation between Saturated Carboxylate with ortho-
Quinone Methide: Possible Mechanisms and Origin of Enantioselec-
tivity. ChemistrySelect 2017, 2, 8856.
(28) (a) Li, C.-W.; Xia, M.-W.; Cui, C.-B.; Peng, J.-X.; Li, D.-H. A
Novel Oxaphenalenone, Penicimutalidine: Activated Production of
Oxaphenalenones by the Diethyl Sulphate Mutagenesis of Marine-De-
rived Fungus Penicillium purpurogenum G59. RSC Adv. 2016, 6,
82277. (b) Kobe Gakuin University (2013). Benzo[de]isochromene
compounds and their use for pharmaceutical compositions, DNA poly-
merase inhibitors, anticancer agents, and food compositions. JP
2013194044.
(29) (a) Yamato, M.; Ishikawa, T.; Kobayashi, T. Reactivity of Isocou-
marins. II. Reaction of 1-Ethoxyisochroman with Nucleophilic Rea-
gents. Chem. Pharm. Bull. 1980, 28, 2967. (b) Reichl, K. D.; Smith, M.
J.; Song, M. K.; Johnson, R. P.; Porco, J. A., Jr. Biomimetic Total Syn-
thesis of (±)-Griffipavixanthone via a Cationic Cycloaddition−Cycliza-
tion Cascade. J. Am. Chem. Soc. 2017, 139, 14053.
(30) For use of PtCl4 in o-QM cycloadditions, see: (a) Radomkit, S.;
Sarnpitak, P.; Tummatorn, J.; Batsomboon, P.; Ruchirawat, S.; Ploy-
pradith, P. Pt(IV)-catalyzed generation and [4+2]-cycloaddition reac-
tions of o-quinone methides. Tetrahedron 2011, 67, 3904. (b) Tang-
denpaisal, K.; Chuayboonsong, K.; Sukjarean, P.; Katesempao, V.;
Noiphrom, N.; Ruchirawat, S.; Ploypradith, P. Synthesisof C4–C5 Cy-
cloalkyl-Fusedand C6-Modified Chromansvia ortho-Quinone Methi-
des. Chem. Asian J. 2015, 10, 1050.
(31) For isolation of oxaphenalenone natural products which contain a
p-QM functionality, see: (a) Leyte-Lugo, M.; Figueroa, M.; González,
M.; Glenn, A. E.; González-Andrade, M.; Mata, R. Metabolites from
the Entophytic Fungus Sporormiella minimoides Isolated from Hinto-
nia latiflora. Phytochem. 2013, 96, 273. (b) Overy, D. P.; Smedsgaard,
J.; Frisvad, J. C.; Phipps, R. K.; Thrane, U. Host-Derived Media Used
as a Predictor for Low Abundant, in Planta Metabolite Production from
Necrotrophic Fungi. J. Appl. Microbiol. 2006, 101, 1292. (c) Overy, D.
P.; Zidorn, C.; Petersen, B. O.; Duus, J. Ø.; Dalgaard, P. W.; Larsen, T.
O.; Phipps, R. K. Medium Dependant Production of Corymbiferone a
(43) Liao, D.; Li, H.; Lei, X. Efficient Generation of ortho-Quinone
Methide: Application to the Biomimetic Syntheses of (±)-Schefflone
and Tocopherol Trimers. Org. Lett. 2012, 14, 18.
(44) Fries, S.; Gollnick, K. Thermal [2+2] cycloadditions of tetracy-
anoethylene to cyclic thioenol ether. Angew. Chem. 1980, 92, 848.
ACS Paragon Plus Environment