J. Am. Chem. Soc. 1999, 121, 9265-9275
9265
1,3-Cyclopentanediyl Diradicals: Substituent and Temperature
Dependence of Triplet-Singlet Intersystem Crossing
Fumio Kita,† Waldemar Adam,*,† Paul Jordan,§ Werner M. Nau,‡ and Jakob Wirz*,‡
Contribution from the Institut fu¨r Organische Chemie der UniVersita¨t Wu¨rzburg, Am Hubland,
D-97074 Wu¨rzburg, Germany, and the Institut fu¨r Physikalische Chemie and the
UniVersita¨tsrechenzentrum, UniVersita¨t Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
ReceiVed April 26, 1999. ReVised Manuscript ReceiVed August 5, 1999
Abstract: The lifetimes of 33 1,3-diaryl-1,3-cyclopentanediyl triplet diradicals were determined by laser flash
photolysis of the corresponding azoalkane precursors. The first-order decay rate constants range from 0.8 to
16.7 × 105 s-1 in degassed solution at 294 K and exhibit a systematic, but nonlinear dependence on Brown’s
σ+ substituent constants. Analysis of spin-orbit coupling in terms of the two-electrons-in-two-orbitals model
indicates that the electronic effect on the rates of intersystem crossing operates by influencing the weight of
ionic contributions in the lowest singlet state wave functions of the diradicals. Counter to intuition, but in
agreement with the prediction by the model, push-pull substitution does not enhance the ionic contribution.
Arrhenius parameters, Ea ) 2-6 kcal mol-1 and A ) 107-1010 s-1, were determined from the temperature
dependences of the decay rate constants. A sensitive statistical test is used to establish that the Arrhenius
parameters exhibit enthalpy-entropy compensation, that is, an approximate isokinetic relationship.
Introduction
diradicals connected by extended chains (n J 7).9 The present
study deals with substituent effects on the lifetimes of 1,3-
diradicals, for which SOC is the dominant mechanism inducing
ISC.
Diradicals are ephemeral because their bifunctionality gener-
ally entails intramolecular paths for stabilization. For triplet
diradicals these reactions are, however, impeded by a “spin
barrier”, as intersystem crossing (ISC) to the singlet state is
required. This step usually determines the lifetime of triplet
diradicals, kISC ) τ-ob1sd. Spin-orbit coupling (SOC)1-7 and
hyperfine coupling8 are primarily responsible for ISC in
diradicals. Hyperfine coupling becomes important for 1,n-
Lifetimes of numerous triplet diradicals have been deter-
mined.10 Nevertheless, a comparison with theoretical predictions
for substituent effects is difficult, because calculated ISC rates
depend both on electronic and on geometrical factors such as
the relative orientation of the radical centers and of the tether.2
For flexible systems, SOC matrix elements need to be evaluated
for a distribution of molecular conformations and averaged over
wave functions of internal rotation.11 With the goal to determine
electronic substituent effects in model systems with restricted
conformational freedom, we investigated the diaryl-substituted
1,3-cyclopentanediyls 1 and 2 (Scheme 1), in which the radical
centers are embedded in a five-membered ring.12 In this series
the substituent effects on ISC rate constants follow a remarkably
simple pattern, which confirms predictions derived from a model
of two electrons in two orbitals.3 Moreover, the variation of
the ISC rate constants with temperature reveals the interplay of
substituent effects on SOC and on the thermal barrier for ISC.
† Universita¨t Wu¨rzburg.
‡ Institut fu¨r Physikalische Chemie, Basel.
§ Universita¨tsrechenzentrum, Basel.
(1) (a) McGlynn, S. P.; Azumi, T.; Kinoshita, M. In Molecular
Spectroscopy of the Triplet State; Prentice Hall: Englewood Cliffs, 1969;
Chapter 5. (b) Langhoff, S. R. In Modern Theoretical Chemistry; Schaefer,
H. F., III, Ed.; Plenum: New York, 1977; Vol. 4. (c) Levine, I. N. In
Quantum Chemistry; Allyn and Bacon: Newton, MA, 1983; p 281.
(2) Salem, L.; Rowland, C. Angew. Chem., Int. Ed. Engl. 1972, 11, 92.
(3) (a) Bonacˇic´-Koutecky´, V.; Koutecky´, J.; Michl, J. Angew. Chem.,
Int. Ed. Engl. 1987, 26, 170. (b) Michl, J.; Bonac´ic´-Koutecky´, V. In
Electronic Aspects of Organic Photochemistry; John Wiley & Sons: New
York, 1990; p 169. (c) Michl, J. In Theoretical and Computational Models
for Organic Chemistry; Formosinho, S. J., Czismadia, I. G., Arnaut, L. G.,
Eds.; Kluwer: Dordrecht, The Netherlands, 1991; p 207. (d) Michl, J. J.
Mol. Struct. (THEOCHEM) 1992, 260, 299. (e) Michl, J. J. Am. Chem.
Soc. 1996, 118, 3568.
(4) (a) Zimmermann, H. E.; Kutateladze, A. G.; Maekawa, Y.; Mangette,
J. E. J. Am. Chem. Soc. 1994, 116, 9795. (b) Zimmermann, H. E.;
Kutateladze, A. G. J. Org. Chem. 1995, 60, 6008. (c) Zimmermann, H. E.;
Kutateladze, A. G. J. Am. Chem. Soc. 1996, 118, 249.
(5) (a) Minaev, B. F.; Jonsson, D.; Norman, P.; A° gren, H. Chem. Phys.
1995, 194, 19. (b) Knuts, S.; Minaev, B. F.; Vahtras, O.; Aagren, H. Int. J.
Quantum Chem. 1995, 55, 23.
(6) (a) Bo¨ckmann, M.; Klessinger, M. Angew. Chem., Int. Ed. Engl. 1996,
35, 2502. (b) Bo¨ckmann, M.; Klessinger, M.; Zerner, M. C. J. Phys. Chem.
1996, 100, 10570. (c) Klessinger, M. In Theoretical and Computational
Chemistry, Vol. 5: Theoretical Organic Chemistry; Pa´rka´nyi, C., Ed.;
Elsevier: Amsterdam, The Netherlands, 1998.
(7) (a) Furlani, T. R.; King, H. F. J. Chem. Phys. 1985, 82, 5577. (b)
Carlacci, L.; Doubleday, C., Jr.; Furlani, T. R.; King, H. F.; McIver, J. W.,
Jr. J. Am. Chem. Soc. 1987, 109, 5323. (c) Caldwell, R. A.; Carlacci, L.;
Doubleday, C. E., Jr.; Furlani, T. R.; King, H. F.; McIver, J., Jr. W. J. Am.
Chem. Soc. 1988, 110, 6901. (d) Havlas, Z.; Downing, J. D.; Michl, J. J.
Phys. Chem. 1998, 102, 5681.
Results
Diradicals 1 and 2 were generated by irradiation of the
corresponding azoalkanes 3 and 4, which were synthesized by
(8) (a) De Kanter, F. F. J.; Den, Hollander, J. A.; Huizerm, A. H.;
Kaptein, R. Mol. Phys. 1977, 34, 857. (b) De Kanter, F. J. J.; Kaptein, R.
J. Am. Chem. Soc. 1982, 104, 4759. (c) Turro, N. J.; Kra¨utler, B. Acc. Chem.
Res. 1980, 13, 369.
(9) Doubleday, C., Jr.; Turro, N. J.; Wang, J.-F. Acc. Chem. Res. 1989,
22, 199.
(10) (a) Caldwell, R. A. Pure Appl. Chem. 1984, 56, 1167. (b) Johnston,
L. J.; Scaiano, J. C. Chem. ReV. 1989, 89, 521. (c) Adam, W.; Grabowski,
S.; Wilson, R. M. Acc. Chem. Res. 1990, 23, 165. (d) Caldwell, R. A. In
Kinetics and Spectroscopy of Carbenes and Biradicals; Platz, M. S., Ed.;
Plenum: New York, 1990; p 117. (e) Ichinose, N.; Mizuno, K.; Otsuji, Y.;
Caldwell, R. A.; Helms, A. M. J. Org. Chem. 1998, 63, 3176.
(11) Morita, A.; Kato, S. J. Phys. Chem. 1993, 97, 3298.
(12) Preliminary publications: (a) Adam, W.; Fro¨hlich, L.; Nau, W. M.;
Wirz, J. J. Am. Chem. Soc. 1993, 115, 9824. (b) Kita, F.; Nau, W. M.;
Adam, W.; Wirz, J. J. Am. Chem. Soc. 1995, 117, 8670.
10.1021/ja991362d CCC: $18.00 © 1999 American Chemical Society
Published on Web 09/25/1999