Table 1 Thermodynamic parameters for dimerization of 2b and 3b (R = C8H17) in different solvents compared to 2a (R = C2H5) in DMF-d7
Complex
Solventa
Kdim (25 uC)b/L mol21
DH/kJ mol21
DS/J mol21 K21
2a
2b
DMF-d7
270 ¡ 10
800 ¡ 100
1500 ¡ 400
1000 ¡ 300
10 ¡ 3
19 ¡ 1
27 ¡ 5
1 ¡ 4
11 ¡ 8
24 ¡ 12
110 ¡ 2
32 ¡ 14
64 ¡ 14
94 ¡ 24
100 ¡ 34
Benzene-d6
Toluene-d8
p-Xylene-d10
Benzene-d6
3b
a
Solubility and the melting/boiling point of the solvents limited the temperature ranges over which the experiments could be performed.
Association constants at 25 uC are calculated from van’t Hoff plots.
b
B. C. Gibb and V. Ramamurthy, J. Am. Chem. Soc., 2004, 126, 14366;
macrocycle–macrocycle interactions leads to near cancellation of
the enthalpy changes that occur upon dimerization.
(c) J. Chen and J. Rebek, Jr., Org. Lett., 2002, 4, 327; (d) J. Kang,
J. Santamaria, G. Hilmersson and J. Rebek, Jr., J. Am. Chem. Soc.,
1998, 120, 7389.
3 For a review, see: (a) L. J. Prins, D. N. Reinhoudt and P. Timmerman,
Angew. Chem., Int. Ed., 2001, 40, 2382. Not included in the review: (b)
I. Vatsouro, V. Rudzevich and V. Bo¨hmer, Org. Lett., 2007, 9, 1375; (c)
M. Yamanaka, K. Ishii, Y. Yamada and K. Kobayashi, J. Org. Chem.,
2006, 71, 8800; (d) A. Bogdan, Y. Rudzevich, M. O. Vysotsky and
V. Bo¨hmer, Chem. Commun., 2006, 2941; (e) T. Amaya and J. Rebek,
Jr., J. Am. Chem. Soc., 2004, 126, 14149.
4 (a) N. P. Power, S. J. Dalgarno and J. L. Atwood, New J. Chem., 2007,
31, 17; (b) C. J. Sumby, J. Fisher, T. J. Prior and M. J. Hardie, Chem.–
Eur. J., 2006, 12, 2945; (c) T. Haino, M. Kobayashi, M. Chikaraishi and
Y. Fukazawa, Chem. Commun., 2005, 2321; (d) S. J. Park, D. M. Shin,
S. Sakamoto, K. Yamaguchi, Y. K. Chung, M. S. Lah and J.-I. Hong,
Chem.–Eur. J., 2005, 11, 235; (e) Z. Zhong, A. Ikeda, M. Ayabe,
S. Shinkai, S. Sakamoto and K. Yamaguchi, J. Org. Chem., 2001, 66,
1002; (f) A. Ikeda, M. Yoshimura, H. Udzu, C. Fukuhara and
S. Shinkai, J. Am. Chem. Soc., 1999, 121, 4296.
5 (a) O. Sigouin, C. N. Garon, G. Delaunais, X. Yin, T. K. Woo,
A. Decken and F.-G. Fontaine, Angew. Chem., Int. Ed., 2007, 46, 4979;
(b) E. Botana, E. Da Silva, J. Benet-Buchholz, P. Ballester and J. de
Mendoza, Angew. Chem., Int. Ed., 2007, 46, 198; (c) S.-Y. Yu,
T. Kusukawa, K. Biradha and M. Fujita, J. Am. Chem. Soc., 2000, 122,
2665.
6 (a) A. B. Descalzo, R. Mart´ınez-Ma´n˜ez, F. Sanceno´n, K. Hoffmann and
K. Rurak, Angew. Chem., Int. Ed., 2006, 45, 5924; (b) V. Maurizot,
M. Yoshizawa, M. Kawano and M. Fujita, Dalton Trans., 2006, 2750;
(c) C. Jeunesse, D. Armspach and D. Matt, Chem. Commun., 2005,
5603; (d) S. Leininger, B. Olenyuk and P. J. Stang, Chem. Rev., 2000,
100, 853.
7 (a) A. J. Gallant, J. H. Chong and M. J. MacLachlan, Inorg. Chem.,
2006, 45, 5248; (b) T. Nabeshima, H. Miyazaki, A. Iwasaki, S. Akine,
T. Saiki, C. Ikeda and S. Sato, Chem. Lett., 2006, 35, 1070.
8 D. J. Cram, H. J. Choi, J. A. Bryant and C. B. Knobler, J. Am. Chem.
Soc., 1992, 114, 7748.
Compared with the macrocyclic bowls of the zinc cluster
complexes, the bowls of 2a and 2b are deeper and greater in
volume. This is a consequence of accommodating the larger
cadmium cluster inside the macrocycle, requiring the ring to open
wider. To determine whether the bowl dimensions influence the
dimerization of the complexes, we synthesized zinc complex 3b and
measured its dimerization constants in benzene-d6 using VTVC 1H
NMR spectroscopy. Remarkably, at 298 K the association
constant for the zinc bowl complex 3b is only 10 ¡ 3 mol L21
,
substantially smaller than that of cadmium complex 2b. The zinc
cluster complex also exhibits entropy-driven dimerization. Unlike
organic capsule-forming molecules, which often require several
steps to modify, our results illustrate a simple method to modify
the bowl shape of the metallocavitands, and thus significantly alter
the monomer–dimer equilibrium.
In summary, we have discovered a new stable heptanuclear
cadmium cluster complex that is formed within a Schiff base
macrocycle. A single-crystal X-ray diffraction experiment revealed
that these molecules organize into face-to-face capsules in the solid
state. We have demonstrated the first reversible dimerization of
these metallocavitands, a process that appears to be entropy-driven.
Moreover, we have illustrated the ability to use coordination
chemistry to change the curvature of the bowl, and to modify the
thermodynamics of capsule formation. These tunable metalloca-
vitand capsules with accessible metal sites on their interiors are
alluring candidates for host–guest catalysis and molecular
recognition. We are now expanding the dimerization and guest
inclusion studies of the metallocavitands.
9 A. J. Gallant, J. K.-H. Hui, F. E. Zahariev, Y. A. Wang and
M. J. MacLachlan, J. Org. Chem., 2005, 70, 7936.
We thank Amanda Gallant who carried out some of the initial
experiments, and Jonathan Chong and Brian Patrick for assistance
solving the structure of 2a. We thank NSERC for funding this
research.
10 We have conducted 113Cd NMR on an analogous hexyloxy substituted
metallocavitand and observed three distinct resonances at 139.5 (t,
3JCd–H = 34.2), 10.1 and 1.1 ppm, consistent with the three cadmium
environments in the crystal structure of 2a (CDCl3, 84.86 MHz;
calibrated to 0 ppm with a 0.1 mol L21 solution of Cd(ClO4)2 in D2O).
11 (a) L. Wang, M. Yang, G. Li, Z. Shi and S. Feng, Inorg. Chem., 2006,
45, 2474; (b) W.-K. Lo, W.-K. Wong, W.-Y. Wong and J. Guo, Eur. J.
Inorg. Chem., 2005, 3950.
Notes and references
{ Crystal data for 2a: C87H121Cd7N13O35, Mr = 2695.77, red plate (0.25 6
¯
0.25 6 0.10 mm), rhombohedral, space group R3m, a = b = 28.712(3), c =
12 (a) Q.-R. Fang, G.-S. Zhu, Z. Jin, M. Xue, X. Wei, D.-J. Wang and
S.-L. Qiu, Angew. Chem., Int. Ed., 2006, 45, 6126; (b) H. Chun, D. Kim,
D. N. Dybtsev and K. Kim, Angew. Chem., Int. Ed., 2004, 43, 971.
13 (a) H.-K. Fun, S. S. S. Raj, R.-G. Xiong, J.-L. Zuo, Z. Yu and
X.-Z. You, J. Chem. Soc., Dalton Trans., 1999, 1915; (b) A. Ja¨ntti,
M. Wagner, R. Suontamo, E. Kolehmainen and K. Rissanen, Eur. J.
Inorg. Chem., 1998, 1555.
26.128(3) s, V = 18654(4) s3, Z = 6, Dc = 1.440 g cm23, l = 0.710 69 s,
T = 173(2) K, , 46300 reflections collected, 2884 unique (Rint = 0.1841).
Final GoF = 1.005, R1 = 0.0665, wR2 = 0.1847, R indices based on 1816
reflections with I . 2s(I). CCDC 643623. For crystallographic data in CIF
or other electronic format see DOI: 10.1039/b710809e
14 Preliminary attempts to observe guests in DMF-d7 by 1H NMR
spectroscopy have been hindered due to solubility constraints at low
temperature (DMF-d7 is the only solvent in which monomer and dimer
peaks of 2a may be resolved).
1 (a) S. J. Dalgarno, J. L. Atwood and C. L. Raston, Chem. Commun.,
2006, 4567; (b) J. Rebek, Jr., Angew. Chem., Int. Ed., 2005, 44, 2068; (c)
J. Rebek, Jr., Chem. Commun., 2000, 637; (d) M. M. Conn and J. Rebek,
Jr., Chem. Rev., 1997, 97, 1647.
15 I. Horman and B. Dreux, Helv. Chim. Acta, 1984, 67, 754.
16 J. Kang and J. Rebek, Jr., Nature, 1996, 382, 239.
2 (a) L. S. Kaanumalle, C. L. D. Gibb, B. C. Gibb and V. Ramamurthy,
Org. Biomol. Chem., 2007, 5, 236; (b) L. S. Kaanumalle, C. L. D. Gibb,
4482 | Chem. Commun., 2007, 4480–4482
This journal is ß The Royal Society of Chemistry 2007