Inorganic Chemistry
COMMUNICATION
’ ACKNOWLEDGMENT
The authors thank DST (Nanomission) Govt of India for
funding this research.
’ REFERENCES
(1) Chakrabarti, D. J.; Laughlin, D. E. Bull. Alloy Phase Diagrams
1983, 4, 254–271.
(2) Wu, Y.; Wadia, C.; Ma, W.; Sadtler, B.; Alivisatos, A. P. Nano-
technolgy 2008, 8, 2551–2555.
(3) Sakamoto, T.; Sunamura, H.; Kawaura, H.; Hasegawa, T.;
Nakayama, T.; Aono, M. Appl. Phys. Lett. 2003, 82, 3032–3034.
(4) Okamoto, K; Kawai, S. Jpn. J. Appl. Phys. 1973, 12, 1030–1038.
(5) Liang, W.; Whangbo, M.-H. Solid State Commun. 1993, 85, 405–408.
(6) Lou, Y. B.; Samia, A. C. S.; Cowen, J.; Banger, K.; Chen, X. B.;
Lee, H.; Burda, C. Phys. Chem. Chem. Phys. 2003, 5, 1091–1095.
(7) Goble, R. J. Can. Mineral. 1985, 23, 61–76.
(8) Mumme, W. G.; Sparrow, G. J.; Walker, G. S. Mineral Mag. 1988,
52, 323–330.
(9) Lukashev, P.; Lambrecht, W. R. L.; Kotani, T.; Schilfgaarde, M.
Phys. Rev. B 2007, 76 (195202), 1–14.
(10) Blachnik, R.; Muller, A. Thermochim. Acta 2000, 362, 31–52.
(11) Wang, W.; Zhuang, J.; Peng, Q.; Li, Y. Nature 2005, 437, 121–124.
(12) Du, X.-S.; Mo, M.; Zheng, R.; Lim, S.-H.; Meng, Y.; Mai, Y.-W.
Cryst. Growth Des. 2008, 8, 2032–2035.
(13) Choi, S.-H.; An, K.; Kim, E.-G.; Yu, J. H.; Kim, J. H.; Hyeon, T.
Adv. Funct. Mater. 2009, 19, 1645–1649.
(14) Zhang, H.; Zhang, Y.; Yu, J.; Yang, D. J. Phys. Chem. C 2008,
112, 13390–13394.
(15) Zhao, Y.; Pan, H.; Lou, Y.; Qiu, X.; Zhu, J.; Burda, C. J. Am.
Chem. Soc. 2009, 131, 4253–4261.
(16) Gorai, S.; Ganguli, D.; Chaudhuri, S. Mater. Sci. Eng. B 2005,
116, 221–225.
Figure 3. Raman spectra of Cu2S, Cu9S5, Cu9S8, and CuS.
Highly intense peaks at 465, 466, 470, and 474 cmꢀ1 are
observed along with the weaker ones at 257, 259, 262, and
266 cmꢀ1 for Cu2S, Cu9S5, Cu9S8, and CuS, respectively.
It is very important to note that Cu2S is PL inactive, and it
shows diamagnetic behavior at room temperature (Figure S4).
Very interesting magnetic characteristics are observed for Cu9S5,
Cu9S8, and CuS samples. On moving from Cu2S to CuS through
Cu1.8S and Cu9S8, the magnetic character goes through a
transition from diamagnetic to paramagnetic, with Cu9S8 show-
ing a mixed diamagnetic and paramagnetic nature in the mag-
netic hysteresis loop. A significant paramagnetic nature,
prevalent in the magnetic field between 0 and 2000 Oe with a
weak molar susceptibity of χM = 1.08 ꢁ 10ꢀ4 emu/mol, is observed
for Cu9S8. CuS shows a very clear paramagnetic hysteresis loop
with the χM = 1.198 ꢁ 10ꢀ3 emu/mol. CuS is a special hexagonal
crystalline structure, consisting of layers of planar CuS3 triangles,
containing Cu2+ and S2ꢀ ions, surrounded (above and below) by
(17) Gorai, S.; Ganguli, D.; Chaudhuri, S. Cryst. Growth Des. 2005,
5, 875–877.
(18) Zheng, X.; Hu, Q. Appl. Phys. A: Mater. Sci. Process. 2009,
94, 805–812.
(19) Lim, W. P.; Wong, T. W.; Ang, S. L.; Low, H. Y.; Chin, W. S.
Chem. Mater. 2006, 18, 6170–6177.
(20) Jiang, X.; Xie, Y.; Lu, J.; He, W.; Zhu, L.; Qian, Y. J. Mater. Chem.
2000, 10, 2193–2196.
CuS4 tetrahedral arrangements of Cu+ and S2 ions.33,34 The
2ꢀ
presence of a mixed diamagnetic and paramagnetic character of
Cu9S8 proves that the ratio of the tricoordinated Cu2+ to the
tetrahedral coordinated Cu+ decisively determines the overall
magnetic behavior of the copper sulfides.
(21) Kumar, P.; Gusain, M.; Nagarajan, R. Inorg. Chem. 2011,
50, 3065–3070.
(22) Larsen, T. H.; Sigman, M.; Ghezelbach, A.; Doty, R. C.; Korgel,
B. A. J. Am. Chem. Soc. 2003, 125, 5638–5639.
(23) Sigman, M. B., Jr.; Ghezelbach, A.; Hanrath, T.; Saunders, A. E.;
Lee, F.; Korgel, B. A. J. Am. Chem. Soc. 2003, 125, 16050–16057.
(24) Chen, L.; Chen, Y.-B.; Wu, L.-M. J. Am. Chem. Soc. 2004,
126, 16334–16335.
(25) (a) Dusastre, V.; Omar, B.; Parkin, I. P.; Shaw, G. A. J. Chem.
Soc., Dalton Trans. 1997, 3505–3508. (b) Li, Y.; Wang, Z.; Ding, Y. Inorg.
Chem. 1999, 38, 4737–4740.
In conclusion, a simple and very effective approach has been
described for the synthesis of copper sulfides in which the
composition is precisely controlled. The superiority of this approach
lies in the fact that all of the reactions are conducted simply at room
temperature. In addition, this paves the way for the preparation of
other nonstoichiometric compositions known in the CuꢀS phase
diagram as well as in other copper-based chalcogenides.
’ ASSOCIATED CONTENT
(26) Bombicz, P.; Mutikainen, L.; Krunks, M.; Leskela, T.; Madarasz,
J.; Niinisto, L. Inorg. Chim. Acta 2004, 357, 513–525.
(27) Chen, Y.-B.; Chen, L.; Wu, L.-M. Chem.—Eur. J. 2008,
14, 11069–11079.
(28) Qin, A.-M.; Fang, Y.-P.; Ou, H.-D.; Liu, H.-Q.; Su, C.-Y. Cryst.
Growth Des. 2005, 5, 855–860.
(29) Lu, Q.; Gao, F.; Zhao, D. Nano Lett. 2002, 2, 725–728.
(30) Godoꢀcíkovꢁa, E.; Balꢁaꢀz, P.; Gock, E.; Choi, W. S.; Kim, B. S.
Powder Technol. 2006, 167, 147–152.
(31) Murphy, D. W.; Cros., D.; Salvo, F. J. D.; Waszcak, J. V. Inorg.
Chem. 1977, 16, 3027–3031.
S
Supporting Information. Magnetization measurements
b
at room temperature of the prepared copper sulfides and the
LeBail fitting details of the powder X-ray diffraction pattern of the
monoclinic Cu2S. This material is available free of charge via the
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: rnagarajan@chemistry.du.ac.in.
(32) Isac, L. A.; Dutta, A.; Enesca, I. A.; Nanu, M. J. Phys.: Conf. Ser.
2007, 61, 477–481.
(33) Okamato, K.; Kawai, S.; Kiriyama, R. Jpn. J. Appl. Phys. 1969,
8, 718–724.
(34) Nozaki, H.; Shibata, K.; Ohhashi, N. J. Solid State Chem. 1991,
91, 306–311.
Notes
Scope of the reactionThough this study has been concentrated to
copper sulfides, a similar approach can effectively be applied for
composition control in other metal sulfides.
9206
dx.doi.org/10.1021/ic201133a |Inorg. Chem. 2011, 50, 9204–9206