Paper
RSC Advances
nitrobenzoic acid) (DTNB) was used for the measurement of the
antiacetylcholinesterase activity. Briey, in this method, 100 ml
S. Bindu and V. Sreekumar, Angew. Chem., Int. Ed., 2004,
43, 5130.
of Tris buffer at 50 mM (pH 8.0), 30 ml of sample or standard and 11 (a) S. P. Nolan, N-Heterocyclic Carbenes in Synthesis, Wiley-
ꢀ
1
5
ml of AChE enzyme (0.5 U ml ) were added in a 96 well
VCH Verlag GmbH & Co. KGaA, Weinheim, 2006; (b)
F. Glorius, N-Heterocyclic Carbenes in Transition Metal
Catalysis Topics in Organometallic Chemistry, Springer-
Verlag, Berlin, 2007; (c) W. A. Herrmann and C. Kocher,
Angew. Chem., Int. Ed., 2007, 36, 2162; (d) W. A. Herrmann,
M. Elison, J. Fischer, C. Kocher and G. R. J. Artus, Angew.
Chem., Int. Ed. Engl., 1995, 34, 2371.
ꢁ
microplate and incubated for 10 min at 25 C. Then, 142 ml of
DTNB (3 mM) and 23 ml of substrate (75 mM) were added.
Hydrolysis of ATCI was monitored by the formation of the
yellow 5-thio-2-nitrobenzoate anion as a result of the reaction of
DTNB with thiocholines, catalyzed by enzymes at 405 nm
utilizing a 96 well microplates reader (Thermo Scientic/
Varioskan Flash, Germany). The kinetic reaction has been fol- 12 A. J. Arduengo, H. L. Harlow and M. Kline, J. Am. Chem. Soc.,
lowed until the AChE activity decreased, and then the reaction 1991, 113, 361.
has been stopped. Percentage of inhibition of AChE was deter- 13 (a) E. Peris and R. H. Crabtree, Coord. Chem. Rev., 2004, 248,
mined by comparison of rates reaction of samples relative to
control (10% DMSO in Tris buffer) using the following formula:
2239; (b) M. C. Perry and K. Burgess, Tetrahedron: Asymmetry,
2003, 14, 951.
1
1
4 A. J. Arduengo, R. L. Harlow and M. Kline, J. Am. Chem. Soc.,
1991, 113, 361.
5 C. W. K. Gstottmayr, V. P. W. Bohm, E. Herdtweck,
M. Grosche and W. A. Herrmann, Angew. Chem., Int. Ed.,
%
AChEI ¼ 1 ꢀ (dAsample/dAcontrol) ꢂ 100
where dAsample: sample absorbance at zero time ꢀ sample
absorbance at the end of reaction, and dAcontrol: control absor-
bance at zero time ꢀ control absorbance at the end of reaction.
Galanthamine was used as standard.
2002, 41, 1363.
1
1
1
6 V. Lavallo, Y. Canac, A. De Hope, B. Donnadieu and
G. Bertrand, Angew. Chem., Int. Ed., 2005, 44, 7236.
7 K. Vehlow, S. Maechling and S. Blechert, Organometallics,
ꢀ1
All synthesised compounds have been tested at 100 mg ml
of concentration. This determination was done in triplicate and
obtained results were very similar. The reported value is the
average of the three tests.
2006, 25, 25.
8 (a) J. W. Sprengers, J. Wassenaar, N. D. Clement and
K. J. Cavell, Angew. Chem., Int. Ed., 2005, 44, 2026; (b)
N. D. Clement and K. J. Cavell, Angew. Chem., Int. Ed.,
2004, 43, 3845.
Conflicts of interest
1
9 (a) A. Furstner, O. R. Thiel and C. W. Lehmann,
Organometallics, 2002, 21, 331; (b) A. Furstner,
L. Ackermann, A. Beck, H. Hori, D. Koch, K. Langemann,
M. Liebl, C. Six and W. Leitner, J. Am. Chem. Soc., 2001,
123, 9000.
There are no conicts to declare.
Acknowledgements
20 G. Altenhoff, R. Goddard, C. W. Lehmann and F. Glorius, J.
Am. Chem. Soc., 2001, 126, 15195.
This work was nanced by the Research Supporting Project
(RSP-2019/75), King Saud University, Riyadh Saudi Arabia.
2
1 (a) T. W. Funk, J. M. Berlin and R. H. Grubbs, J. Am. Chem.
Soc., 2006, 128, 1840; (b) J. P. Morgan and R. H. Grubbs,
Org. Lett., 2000, 2, 3153.
References
22 N. Marion, O. Navarro, J. Mei, E. D. Stevens, N. M. Scott and
1
2
T. Ikayira and A. J. Blacker, Acc. Chem. Res., 2007, 40, 1300.
G. Zassinovich, G. Mestroni and S. Gladiali, Chem. Rev., 1992, 23 (a) M. J. Schultz, S. S. Hamilton, D. R. Jensen and
S. P. Nolan, J. Am. Chem. Soc., 2006, 128, 4101.
9
2, 1051.
M. S. Sigman, J. Org. Chem., 2005, 70, 3343; (b)
C. M. Crudden and D. P. Allen, Coord. Chem. Rev., 2004,
248, 2247.
3
C. F. de Graauw, J. A. Peters, H. van Bekkum and J. Husken,
Synthesis, 1994, 10, 1007.
4
5
R. Noyori and S. Hashigushi, Acc. Chem. Res., 1997, 30, 97.
M. Yamakawa, H. Ito and R. Noyori, J. Am. Chem. Soc., 2000,
24 (a) R. H. Grubbs, Handbook of Olen Metathesis, VCH-Wiley,
Weinheim, 2003; (b) S. Beligny and S. Blechert, in N-
Heterocyclic Carbenes in Synthesis, ed. S. P. Nolan, Wiley-
VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.
122, 1466.
6
7
R. Noyori, Angew. Chem., Int. Ed., 2002, 41, 2008.
M. Bierenstiel, M. Dymarska, E. de Jong and M. Schlaf, J. Mol. 25 (a) I. Ozdemir, B. Yigit, B. Cetinkaya, D. Ulku, M. N. Tahir
Catal. A: Chem., 2008, 290, 1.
M. Zhao, Z. Yu, S. Yan and Y. Li, Tetrahedron Lett., 2009, 50,
and C. Arici, J. Organomet. Chem., 2001, 633, 27; (b)
S. Yasar, I. Ozdemir, B. Cetinkaya, J. L. Renaud and
C. Bruneau, Eur. J. Org. Chem., 2008, 2142.
8
9
4624.
¨
M. Yigit, B. Yigit, I. Ozdemir, E. Çetinkaya and B. Çetinkaya, 26 (a) I. Ozdemir, S. Yasar and B. Cetinkaya, Transition Met.
Appl. Organomet. Chem., 2006, 20, 322.
Chem., 2005, 30, 831; (b) M. Yigit, B. Yigit, I. Ozdemir,
E. Cetinkaya and B. Cetinkaya, Appl. Organomet. Chem.,
2006, 20, 322.
1
0 (a) N. Marion, S. Diez-Gonzalez and S. P. Nolan, Angew.
Chem., Int. Ed., 2007, 46, 2988; (b) D. Enders, O. Niemeier
and A. Henseler, Chem. Rev., 2007, 107, 5606; (c) V. Nair,
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 34406–34420 | 34419