2
02
T. Abe et al. / Chemical Physics Letters 491 (2010) 199–202
as high as 0.9. We are presently in the pursuance of studies on
OLED devices with these deuterated iridium emitters and the re-
sults will be reported in elsewhere.
1
2
Acknowledgments
1
1.5
This research was supported financially by the project ‘Develop-
ment of Microspace and Nanospace Reaction Environment Tech-
nology for Functional Materials’ of the New Energy and Industrial
Technology Development Organization (NEDO), Japan.
1
1
Appendix A. Supplementary data
1
0.5
3
.2
3.3
3.4
1
3.5
3.6
3.7
/T (10-3 K-1)
Fig. 3. Plot of the nonradiative rate constants versus temperature of Ir(ppy-h
8 3
) and
Ir(ppy-d in acetonitrile-h : h/j, and acetonitrile-d : d/s. Error regions are
represented by broken and dotted line for the normal complex and the deuterated
one, respectively.
8
)
3
3
3
References
[
1] M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest, Appl. Phys.
Lett. 75 (1999) 4.
[
[
2] M.A. Baldo, M.E. Thompson, S.R. Forrest, Nature 403 (2000) 750.
3] C. Adachi, M.A. Baldo, S.R. Forrest, M.E. Thompson, Appl. Phys. Lett. 77 (2000)
Table 4
904.
8 n 8 3
Photophysical properties of Ir(ppy-h ) (ppy-d )3ꢀn (n = 1, 2) in acetonitrile-h .
[
[
4] E. Holder, B.M.W. Langeveld, U.S. Schubert, Adv. Mater. 17 (2005) 1109.
5] H. Yersin, Highly Efficient OLEDs with Phosphorescent Materials, Wiley-VCH,
Weinheim, 2008.
U
s
l
k
10
r
k
nr
10 s
5
ꢀ1
5 ꢀ1
s
s
[
6] B. Minaev, V. Minaeva, H. Ågren, J. Phys. Chem. A 113 (2009) 726.
Ir(ppy-h
Ir(ppy-h
8
)
2
(ppy-d
8
)
0.74
0.70
1.9
1.8
4.0
3.9
1.4
1.7
[7] P.J. Hay, J. Phys. Chem. A 106 (2002) 1634.
[8] W.J. Finkenzeller, H. Yersin, Chem. Phys. Lett. 377 (2003) 299.
8
)(ppy-d
8
)
2
[
9] Y. Kawamura, K. Goushi, J. Brooks, J.J. Brown, H. Sasabe, C. Adachi, Appl. Phys.
Lett. 86 (2005) 071104.
[
[
10] K. Nozaki, J. Chin. Chem. Soc. 53 (2006) 101.
11] Y. Kawamura, J. Brooks, J.J. Brown, H. Sasabe, C. Adachi, Phys. Rev. Lett. 96
U
= 0.74 ± 0.03, 0.70 ± 0.03 and
s
= 1.9 ls, 1.8 ls in acetonitrile at
(
2006) 017404.
room temperature, respectively. The values were identical to or
less than that of Ir(ppy-h (Table 4). Unlike the proportional ex-
cited state lifetime increment of Ruðbpy-h
[
12] E. Jansson, B. Minaev, S. Schrader, H. Ågren, Chem. Phys. 333 (2007) 157.
8
)
3
[13] G.J. Hedley, A. Ruseckas, I.D.W. Samuel, Chem. Phys. Lett. 450 (2008) 292.
2
þ
[
[
[
14] M.R. Wright, R.P. Frosch, G.W. Robinson, J. Chem. Phys. 33 (1960) 934.
15] J. Van Houten, R.J. Watts, J. Am. Chem. Soc. 97 (1975) 3843.
16] J.L. Kropp, M.W. Windsor, J. Chem. Phys. 42 (1965) 1599.
8
Þ ðbpy-d
n
8
Þ
(n = 0, 1,
3ꢀn
2
, 3) [39], slight but a clear difference was only observed for a fully
deuterated sample in a series of Ir(ppy-h
8
)
n
(ppy-d
8
)
3ꢀn (n = 0, 1,
[17] S.F. McClanahan, J.R. Kincaid, J. Am. Chem. Soc. 108 (1986) 3840.
[18] P. Huber, H. Yersin, J. Phys. Chem. 97 (1993) 12705.
[
[
[
2
, 3). Therefore the excited state energy of Ir(ppy)
3
seems to be
19] W.R. Browne et al., Inorg. Chim. Acta 360 (2007) 1183.
20] C.C. Tong, K.C. Hwang, J. Phys. Chem. C 111 (2007) 3490.
21] H. Yersin, Top. Curr. Chem. 191 (1997) 153.
trapped by a vibronic coupling with hydrogen involved vibrational
modes. This result is similar to the ligand selective emission of
2
2ꢀn
þ
Ptðbpy-h
8
Þ ðbpy-d
8
Þ
(n = 0, 1, 2) which is led by the effective
[22] W.R. Browne, J.G. Vos, Coord. Chem. Rev. 219 (2001) 761.
n
[
[
[
23] S. Yanagida, Y. Hasegawa, Y. Wada, J. Lumin. 87 (2000) 995.
24] R.J. Watts, S. Efrima, H. Metiu, J. Am. Chem. Soc. 101 (1979) 2742.
25] R.F. Kubin, A.N. Fletcher, J. Lumin. 27 (1982) 455.
intramolecular energy transfer at low temperature [21,40].
Although it is not easy to determine emission selectivity from
room temperature measurements, the nonradiative process of
[26] J.N. Demas, G.A. Crosby, J. Am. Chem. Soc. 93 (1971) 2841.
[
[
[
27] H. Konno, Y. Sasaki, Chem. Lett. 32 (2003) 252.
28] J.S. Strukl, J.L. Walter, Spectrochim. Acta 27A (1971) 209.
29] W.R. Browne et al., Inorg. Chem. 41 (2002) 4245.
Ir(ppy)
rather than intermolecular quenching through solvents.
We have prepared a series of deuterated Ir(ppy-h (ppy-d
n = 0, 1, 2, 3) and studied the luminescence quantum yield and ex-
cited state lifetime of their solutions around room temperature.
The Ir(ppy-d was = 0.80, 0.90, 0.92, 0.93 in acetonitrile, tetra-
hydrofuran, dichloromethane and toluene, respectively, which was
slightly higher than that of Ir(ppy-h in each system. The ligand
deuteration isotope effect was observed as a result of the reduced
nr when the sample was fully deuterated. A comparison of the rate
constants for non-deuterated and fully deuterated Ir(ppy) showed
3
would be driven through intramolecular deactivation
8
)
n
)
8 3ꢀn
[30] N. Ito, H. Esaki, T. Maesawa, E. Imamiya, T. Maegawa, H. Sajiki, Bull. Chem. Soc.
Jpn. 81 (2008) 278.
(
[
31] P.K. Mallick, G.D. Danzer, D.P. Strommen, J.R. Kincaid, J. Phys. Chem. 92 (1988)
628.
[32] K. Maruszewski, K. Bajdor, D.P. Strommen, J.R. Kinkaid, J. Phys. Chem. 99
1995) 6286.
5
8
)
3
U
(
[
33] B.F. Minaev, V.A. Minaeva, G.V. Baryshnikov, M.A. Girtu, H. Ågren, Russ. J. Appl.
Chem. 82 (2009) 1211.
8 3
)
[34] J.V. Caspar, T.J. Meyer, J. Am. Chem. Soc. 105 (1983) 5583.
[35] A. Endo, K. Suzuki, T. Yoshihara, S. Tobita, M. Yahiro, C. Adachi, Chem. Phys.
Lett. 460 (2008) 155.
[
[
[38] A. Masuda, Y. Kaizu, Inorg. Chem. 37 (1998) 3371.
[
[
k
3
36] K. Suzuki et al., Phys. Chem. Chem. Phys. 11 (2009) 9850.
37] J. Van Houten, R.J. Watts, J. Am. Chem. Soc. 98 (1976) 4853.
that the knr was independent of temperature (273–308 K) and sol-
vent deuteration. Our observation of only the ligand deuteration
effect suggests that intramolecular deactivation is a main pathway
39] E. Krausz, G. Moran, H. Riesen, Chem. Phys. Lett. 165 (1990) 401.
40] W. Humbs, H. Yersin, Inorg. Chim. Acta 265 (1997) 139.
3
for the nonradiative process, and therefore Ir(ppy) would have a U