Chemistry - A European Journal
10.1002/chem.201905161
of Δtt-ccTEP = 2.3 cm or more (3.2 cm in ATR technology). Therefore, trans → cis isomerization
of the azobenzene units significantly enhances the electron donating ability of our novel
azobenzene-based NHC. Utilization of such phototuning of electron density at the active site of a
catalyst to alter reaction kinetics of organic transformations is currently under progress.
-1
-1
Acknowledgements: This work was supported by the Science and Engineering Research Board,
statutory body under the Department of Science and Technology, Government of India (File No.
ECR/2016/000829). The corresponding author is thankful to the ‘UGC-Faculty Recharge
Programme’.
References:
1
2
. (a) V. Blanco, D. A. Leigh, Chem. Soc. Rev. 2015, 44, 5341–5370. (b) E. Léonard, F.
Mangin, C. Villette, M. Billamboz, C. Len, Catal. Sci. Technol. 2016, 6, 379-398.
. (a) M. Aizawa, K. Namba, S. Suzuki, Arch. Biochem. Biophys. 1977, 180, 41–48; (b) I.
Karube, S. Suzuki, Y. Nakamoto, M. Nishida, Biotechnol. Bioeng. 1977, 19, 1549–1552; (c)
I. Karube, S. Suzuki, Y. Nakamoto, M. Nishida, J. Mol. Catal. 1979, 6, 51–56.
3
4
. A. Ueno, K. Takahashi, T. Osa, J. Chem. Soc., Chem. Commun. 1981, 3, 94–96.
. (a) M. V. Peters, R. S. Stoll, A. Kühn, S. Hecht, Angew. Chem. Int. Ed. 2008, 47, 5968–
5
972; (b) R. S. Stoll, M. V. Peters, A. Kühn, S. Heiles, R. Goddard, M. Bühl, C. M. Thiele,
S. Hecht, J. Am. Chem. Soc. 2009, 131, 357–376; (c) R. S. Stoll, S. Hecht, Org. Lett. 2009,
1, 4790–4793.
1
5
6
7
. R. Cacciapaglia, S. Di Stefano, L. Mandolini, J. Am. Chem. Soc. 2003, 125, 2224–2227.
. L. Osorio-Planes, C. Rodríguez-Escrich, M. A. Pericàs, Org. Lett. 2014, 16, 1704–1707.
. (a) Y. Wei, S. Han, J. Kim, S. Soh, B. A. Grzybowski, J. Am. Chem. Soc. 2010, 132, 11018–
1
1020; (b) H. Zhao, S. Sen, T. Udayabhaskararao, M. Sawczyk, K. Kučanda, D. Manna, P.
K. Kundu, J.-W. Lee, P. Král, R. Klajn, Nat. Nanotechnol. 2016, 11, 82–88; (c) M.
Szewczyk, G. Sobczak, V. Sashuk, ACS Catal. 2018, 8, 2810–2814.
. K. Öfele, J. Organomet. Chem. 1968, 12, 42–43.
8
9
1
1
. H.-W. Wanzlick, H.-J. Scho
0. A. J. Arduengo III, R. L. Harlow, M. Kline, J. Am. Chem. Soc. 1991, 113, 361–363.
1. (a) W. A. Herrmann, C. Kocher, Angew. Chem., Int. Ed. Engl. 1997, 36, 2162−2187; (b) D.
̈
nherr, Angew. Chem., Int. Ed. Engl. 1968, 7, 141–142.
̈
Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, Chem. Rev. 2000, 100, 39−92; (c) W. A.
Herrmann, Angew. Chem., Int. Ed. 2002, 41, 1290−1309; (d) M. N. Hopkinson, C. Richter,
M. Schedler, F. Glorius, Nature 2014, 510, 485−496; (e) D. M. Flanigan, F. Romanov-
Michailidis, N. A. White, T. Rovis, Chem. Rev. 2015, 115, 9307−9387.
1
1
2. S. Leuthäußer, D. Schwarz, H. Plenio, Chem. Eur. J. 2007, 13, 7195−7203.
3. (a) B. M. Neilson, V. M. Lynch, C. W. Bielawski, Angew. Chem., Int. Ed. 2011, 50,
1
1
0322−10326; (b) B. M. Neilson, C. W. Bielawski, J. Am. Chem. Soc. 2012, 134,
2693−12699; (c) B. M. Neilson, C. W. Bielawski, Organometallics 2013, 32, 3121−3128;
(d) B. M. Neilson, C. W. Bielawski, Chem. Commun. 2013, 49, 5453−5455; (e) B. M.
Neilson, C. W. Bielawski, ACS Catalysis 2013, 3, 1874−1885; (f) A. J. Teator, Y. Tian, M.
Chen, J. K. Lee, C. W. Bielawski, Angew. Chem., Int. Ed. 2015, 54, 11559−11563; (g) A. J.
Teator, H. Shao, G. Lu, P. Liu, C. W. Bielawski, Organometallics 2017, 36, 490−497; (h)
9
This article is protected by copyright. All rights reserved.