Angewandte
Chemie
3411; m) D.P.Lewis, P.M.Muller, R.J.Whitby, R.V.H.Jones,
Tetrahedron Lett. 1991, 32, 6797.
conditions were unsuccessful until now.For this reason,
current efforts are being directed to find the appropriate
catalyst or reaction conditions to achieve higher selectivities.
In summary, we have developed a new zirconocene-
catalyzed isomerization–magnesation reaction of readily
available alkene-substituted enol ethers.[13] The net process
supposes the migration of the vinyl moiety of the enol ether to
the internal position of the initial alkene and the magnesation
of the terminal carbon atom of that initial alkene moiety
(Scheme 5).The global reaction may also be considered as an
[5] For some recent papers, see: a) Z.Tan, E.Negishi,
Angew.
Chem. 2004, 116, 2971; Angew. Chem. Int. Ed. 2004, 43, 2911;
b) E.Negishi, Z.Tan, B.Liang, T.Novak, Proc. Natl. Acad. Sci.
USA 2004, 101, 5782; c) S.Huo, J.Shi, E.Negishi, Angew. Chem.
2002, 114, 2245; Angew. Chem. Int. Ed. 2002, 41, 2141.
[6] a) R.R.Cesati III, J.de Armas, A.H.Hoveyda, Org. Lett. 2002,
4, 395; b) J.de Armas, A.H.Hoveyda, Org. Lett. 2001, 3, 2097;
c) J.de Armas, S.P.Kolis, A.H.Hoveyda,
J. Am. Chem. Soc.
2000, 122, 5977; d) A.H.Hoveyda in Titanium and Zirconium in
Organic Synthesis (Ed.: I. Marek), Wiley-VCH, Weinheim,
Germany, 2002, p.180.
[7] a) J.Barluenga, F.Rodríguez, L.lvarez-Rodrigo, F.J.Faæanµs,
Chem. Soc. Rev. 2005, 34, 762; b) J.Barluenga, A.Fernµndez, L.
lvarez-Rodrigo, F.Rodríguez, F.J.Faæanµs, Synlett 2005, 2513;
c) J.Barluenga, L.lvarez-Rodrigo, F.Rodríguez, F.J.Faæanµs,
Angew. Chem. 2004, 116, 4022; Angew. Chem. Int. Ed. 2004, 43,
3932; d) J.Barluenga, F.Rodríguez, L.lvarez-Rodrigo, J.M.
Zapico, F.J. Faæanµs, Chem. Eur. J. 2004, 10, 109; e) J.
Barluenga, F.Rodríguez, L.lvarez-Rodrigo, FJ..Faæanµs,
Chem. Eur. J. 2004, 10, 101.
Scheme 5. General reaction of the zirconocene-catalyzed isomeriza-
tion–magnesation process.
[8] a) N.Chinkov, A.Levin, I.Marek, Angew. Chem. 2006, 118, 479;
Angew. Chem. Int. Ed. 2006, 45, 465; b) I.Marek, N.Chinkov, A.
Levin, Synlett 2006, 501; c) S.Farhat, I.Zouev, I.Marek,
Tetrahedron 2004, 60, 1329; d) N.Chinkov, S.Majumdar, I.
Marek, J. Am. Chem. Soc. 2003, 125, 13258; e) S.Farhat, I.
Marek, Angew. Chem. 2002, 114, 1468; Angew. Chem. Int. Ed.
2002, 41, 1410; f) N.Chinkov, H.Chechik, S.Majumdar, A.
Liard, I.Marek, Synthesis 2002, 2473; g) N.Chinkov, S.
Majumdar, I.Marek, J. Am. Chem. Soc. 2002, 124, 10282;
h) A.Liard, J.Kaftanov, H.Chechik, S.Farhat, N.Morlender-
Vais, C.Averbuj, I.Marek, J. Organomet. Chem. 2001, 624, 26;
i) A.Liard, I.Marek, J. Org. Chem. 2000, 65, 7218.
equivalent of the vinylmagnesation of terminal olefins, which
is still a rather difficult challenge in the field of carbometal-
lation of alkenes.This unprecedented process is one of the
few examples of zirconocene-catalyzed reactions described in
the literature.The reaction supposes a simple methodology to
access to functionalized Grignard reagents which could find
application in organic synthesis programs.
Received: May 17, 2006
Published online: August 23, 2006
[9] For interesting zirconocene-induced cocyclization–elimination
reactions, see: a) D.R.Owen, R.J.Whitby, Synthesis 2005, 2061;
Keywords: Grignard reagents · homogeneous catalysis ·
rearrangement · synthetic methods · zirconium
.
b) M.Kotora, G.Gao, Z.Li, T.Takahashi,
Tetrahedron Lett.
2000, 41, 7905; c) D.B. Millward, R.M. Waymouth, Organo-
metallics 1997, 16, 1153.
[10] The reaction led to a complex mixture of unidentified com-
pounds when less polar solvents, such as toluene or hexane, were
used.Similar variations on the diastereoselectivity by changing
the solvent (from diethyl ether to THF) have been observed in
related works; this solvent effect has been attributed to the
chelation between the zirconium center and the solvent; for
details, see: A.F.Houri, M.T.Didiuk, Z.Xu, N.R.Horan, A.H.
Hoveyda, J. Am. Chem. Soc. 1993, 115, 6614.
[11] Addition of catalytic amounts of PPh3 has led to important
improvements in related processes; see for example ref.[4k].
The role played by the phosphine moiety in these processes is
unclear; however, we hypothesize the possibility of a stabiliza-
tion of sixteen-electron zirconocene complexes such as 9 and/or
10 (see Scheme 4).As these complexes are the real catalytic
species of the reaction, their stabilization by coordination with
the phosphine allows a longer half-life time of the catalyst and
so, a lower zirconium loading is possible.
[12] Alternatively, a similar mechanism that involves the formation
of a zirconate species by addition of PrMgCl to 3a followed by
Mg–Zr exchange, elimination of Mg alkoxide, further reaction
with another molecule of PrMgCl, and a second transmetalation
step to form 11 and 9 might also be suggested; see ref.[6].
[13] Starting enol ethers used in this work are very readily available
on a large scale by Pd-catalyzed O-vinylation of the correspond-
ing homoallyl alcohol; see: K.F.W. Hekking, F.L. van Delft,
F.P.J.T.Rutjes, Tetrahedron 2003, 59, 6751.
[1] a) New Aspects of Zirconium-Containing Organic Compounds,
Topics in Organomet. Chem., Vol. 10 (Ed.: I. Marek), Springer,
Berlin, 2005; b) Titanium and Zirconium in Organic Synthesis
(Ed.: I. Marek), Wiley-VCH, Weinheim, Germany, 2002.
[2] For some representative examples, see: a) J.Schwartz, JA. .
Labinger, Angew. Chem. 1976, 88, 402; Angew. Chem. Int. Ed.
Engl. 1976, 15, 333; b) C.A.Bertelo, J.Schwartz, J. Am. Chem.
Soc. 1976, 98, 262; c) D.W.Hart, T.F.Blackburn, J.Schwartz,
Am. Chem. Soc. 1975, 97, 679; d) D.W.Hart, J.Schwartz, J. Am.
Chem. Soc. 1974, 96, 8115.
J.
[3] E.Negishi, T.Takahashi, Acc. Chem. Res. 1994, 27, 124, and
references cited therein.
[4] Zirconocene complexes are known to catalyze polymerization
reactions; for some other interesting zirconocene-catalyzed
reactions, see: a) Y.Ikeuchi, T.Taguchi, Y.Hanzawa,
J. Org.
Chem. 2005, 70, 4354; b) J.Terao, S.A.Begum, A.Oda, N.
Kambe, Synlett 2005, 1783; c) V.Gandon, P.Bertus, J.Szymo-
niak, Eur. J. Org. Chem. 2001, 3677; d) P.Wipf, S.Ribe, Org. Lett.
2001, 3, 1503; e) Y.Ura, R.Hara, T.Takahashi, Chem. Commun.
2000, 875; f) F.Grepioni, S.Grilli, G.Martelli, D.Saoia,
J. Org.
Chem. 1999, 64, 3679; g) Y.Yamamura, M.Mori, Tetrahedron
Lett. 1999, 40, 3221; h) K.Kasai, Y.Liu, R.Hara, T.Takahashi,
Chem. Commun. 1998, 1989; i) D.B. Millward, R.M. Way-
mouth, Organometallics 1997, 16, 1153; j) G.Dawson, CA. .
Durrant, G.G. Kirk, R.J. Whitby, R.V.H. Jones, M.C.H.
Standen, Tetrahedron Lett. 1997, 38, 2335; k) N.Uesaka, M.
Mori, K.Okamura, T.Date, J. Org. Chem. 1994, 59, 4542; l) T.
Takahashi, D.Y.Kondakov, N.Suzuki, Organometallics 1994, 13,
Angew. Chem. Int. Ed. 2006, 45, 6362 –6365
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
6365